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ABSTRACT 
Large-scale idea generation platforms often expose ideators 
to previous ideas. However, research suggests people 
generate better ideas if they see abstracted solution paths 
(e.g., descriptions of solution approaches generated through 
human sensemaking) rather than being inundated with all 
prior ideas. Automated and semi-automated methods can 
also offer interpretations of earlier ideas. To benefit from 
sensemaking in practice with limited resources, ideation 
platform developers need to weigh the cost-quality 
tradeoffs of different methods for surfacing solution paths. 
To explore this, we conducted an online study where 245 
participants generated ideas for two problems in one of five 
conditions: 1) no stimuli, 2) exposure to all prior ideas, or 
solution paths extracted from prior ideas using 3) a fully 
automated workflow, 4) a hybrid human-machine approach, 
and 5) a fully manual approach. Contrary to expectations, 
human-generated paths did not improve ideation (as meas-
ured by fluency and breadth of ideation) over simply 
showing all ideas. Machine-generated paths sometimes 
significantly improved fluency and breadth of ideation over 
no ideas (although at some cost to idea quality). These 
findings suggest that automated sensemaking can improve 
idea generation, but we need more research to understand 
the value of human sensemaking for crowd ideation. 
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INTRODUCTION 
Large-scale ideation platforms show potential for solving 
difficult problems by leveraging the scale and diversity of 

online crowds [4,7,37,59]. Current approaches excel at 
collecting many solutions, especially in a competitive 
paradigm where crowd innovators work in isolation from 
each other. However, a significant concern with this ap-
proach is that it often results in wasted effort as newcomers 
retrace obvious but suboptimal solution paths [37]. For 
example, in their recent 10 to the 100th crowdsourced 
innovation project, Google had to recruit 3,000 of their 
employees to prune the 150,000 ideas received from the 
crowd, pushing the project nine months behind schedule. 

Cognitive research on creative ideation suggests that people 
can produce better ideas if they are able to learn from the 
efforts of others, recombining ideas into new ideas and 
iterating on new ideas to improve them [19,21,32,55]. 
However, at crowd scale, simply exposing all ideas to 
everyone may not be the most effective strategy. Ideators 
may not have sufficient time or cognitive resources to sift 
through potentially hundreds to thousands of other ideas. 
Consequently, they may only superficially process and 
build on ideas rather than leveraging them to generate new 
insights [35,36]. The presence of superficial details in raw 
ideas might also lead to cognitive fixation [34,44,56]. For 
these reasons, abstracted solution paths — which distill 
essential solution approaches from a number of different 
ideas while avoiding superficial details — may provide a 
better way for ideators to interact with prior ideas. 

Available sensemaking strategies for abstracting solution 
paths can be placed on a hypothesized cost-quality tradeoff 
continuum, where sensemaking quality (especially its 
benefit for ideation) is a function of the strategy’s cost. At 
the high end of the continuum (high cost, hypothesized high 
quality), there is a mature set of design synthesis strategies 
(e.g., affinity diagramming) employed effectively by design 
teams to make sense of a solution space [5,29,38]; these 
strategies require significant manual human effort, and 
therefore may be hard to scale to crowd ideation. However, 
these sensemaking outputs should hypothetically have high 
value for ideation. At the low end (low cost, hypothesized 
low quality) sit a number of automated approaches (e.g., 
unsupervised machine learning methods like Latent Seman-
tic Indexing (LSI) [18] and K-means clustering) that can 
extract semantic themes in text-based idea sets very quickly 
and efficiently. However, the intrinsic quality of these 
themes (e.g., as measured by correspondence with gold 
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standard human clusters/categories) is often relatively low 
(certainly lower than human-produced themes). Thus, these 
sensemaking outputs should hypothetically have relatively 
low value for ideation. In between sit hybrid approaches 
(medium cost, medium quality) that combine human and 
machine effort [39,58,62,63,65]. Some of these approaches 
may require optimization of complex machine learning 
parameters to be successful, limiting their accessibility to 
large scale ideation platforms. But, relatively simple and 
accessible workflows are also possible, where humans label 
initial machine clusterings from algorithms like K-means.  

Ideation platform developers would benefit greatly from 
knowing the cost-quality tradeoffs of sensemaking ap-
proaches and how to use them at scale with limited re-
sources, but prior work has rarely compared these ap-
proaches directly. To address this important gap, we ex-
plore two main research questions: 

1) Do abstracted solution paths inspire more and better 
ideas compared to seeing all raw ideas or no ideas at 
crowd scale? 

2) If so, how does the sensemaking strategy for abstract 
solution paths—from fully automated to hybrid human-
machine to fully manual—affect the quantity and quali-
ty of generated ideas? 

In an online study, 245 Amazon Mechanical Turk (mTurk) 
participants generated ideas for two innovation problems 
(generating ideas for a novel fabric technology and for 
improving mTurk’s mobile experience) in one of five 
conditions: 1) no stimulation (control), 2) viewing all prior 
ideas for the problem (all ideas), 3) with solution paths 
extracted from human-labeled paths generated for human-
generated clusters of ideas (human-human), 4) human-
labeled paths generated for machine-generated clusters 
(machine-human), or 5) machine-labeled paths generated 
for machine-generated clusters (machine-machine).  

Our main finding is that an off-the-shelf machine approach 
(as exemplified by our machine-machine condition) can 
yield comparable benefits to a costly fully manual approach 
(as exemplified by our human-human condition). Contrary 
to expectations, human-generated solution paths do not 
improve ideation over either simply showing all ideas or no 
ideas at all, as measured by fluency (total number of ideas) 
and breadth of ideation (mean pairwise distance in LSI 
representation of the solution space). However, machine-
generated solution paths sometimes improve fluency and 
breadth of ideation over no ideas (although at a slight cost 
to idea quality). These findings suggest that large-scale 
ideation could benefit from automated sensemaking, but 
more research is needed to better understand the value of 
human-generated sensemaking in a crowd setting. 

This paper contributes: 

1) Empirical findings on the relative value of different 
sensemaking approaches for ideation 

2) Evidence that a simple, easy to implement approach to 
automated sensemaking (using LSI and k-means clus-
tering) can improve fluency and breadth of ideation. 

RELATED WORK 

Effective Collaborative Ideation 
There is consensus in the literature on creative cognition 
that seeing what others have thought and/or are currently 
thinking about the problem can increase people’s ability to 
generate creative ideas (i.e., ideas that are both novel and of 
high quality) [19,21,32,55]. For example, people can 
generate more creative ideas when they have access to 
example designs [41,43,53–55], draw analogies to past 
experiences [11,17,33,64], or see some ideas from others 
who are working on the same problem [8,19]. Some studies 
have also shown that building on others’ ideas not only 
improves individual creativity, but also maximizes the 
community’s ability to reach an optimal solution [8,61]. 

However, these benefits of collaborative ideation can be 
challenging to realize at crowd scale (typically hundreds to 
thousands of ideas). At this scale, interesting but statistical-
ly rare ideas may be less likely to be noticed and built upon, 
leading the crowd to focus on common ideas. From a 
cognitive perspective, effective collaborative ideation 
depends on being able to attend to and deeply process other 
ideas [35,55]. But people are limited in their capacity to 
process information [16,47], and the number of ideas 
produced at crowd scale certainly exceeds this capacity. 
When given too many ideas as potential inspiration, people 
may stop attending to them, or only build on them in 
superficial ways [35,55]. Ideally, we would like crowd 
ideators to focus on the primary task of generating ideas, 
rather than expending most of their effort making sense of a 
large volume of ideas in order to extract useful inspiration. 
Another issue is that the presentation of the ideas in their 
“raw form”, which includes many superficial details, can 
constrain ideators’ search to ideas closely related to the raw 
idea [34,44,56]. Therefore, we hypothesize that simply 
exposing all ideas to all contributors, while simple to 
implement, is not likely to be an effective solution. 

Higher-level abstracted solution paths that distill essential 
solution approaches shared by a number of different raw 
ideas may be a good alternative to raw ideas. A classic 
example of a solution path in the cognitive science litera-
ture is the convergence solution schema (successfully attack 
a single target by converging from multiple points if a 
single, focused attack is not feasible), abstracted from a 
variety of situations (e.g., generals attacking a fortress via 
mined bridges radiating from the fortress, a doctor destroy-
ing a tumor with radiation rays without also destroying 
healthy tissue) [25]. Abstractions such as categories can be 
a powerful way to compress large volumes of information 
into more manageable chunks [12,46], greatly reducing the 
number of “bits” that ideators need to process. This should 
increase the probability that ideators will actually be able to 
attend to and benefit from them. Also, by representing 



primarily the “essential” information that helps to organize 
ideas, such as in schemas [25,64], abstractions could help 
reduce fixation on superficial details.  

Some studies have shown that providing one or a few 
manually generated and selected abstractions can lead to 
better creative performance compared to showing ideas in 
their raw form [45,60,64]. However, this manual selection 
may not always be feasible at crowd scale. In this paper, we 
extend this prior work by examining the value of viewing 
many (~15-20) abstractions rather than just one or two. 

Automated Sensemaking Strategies 
Numerous automated sensemaking methods exist, ranging 
from relatively mature (e.g., well-studied, shown to be 
robust across a range of settings) and simple (i.e., produces 
reasonable results without requiring significant tuning of 
many complex model parameters) vector-space models like 
Term-Frequency Inverse-Document Frequency (TF-IDF) 
and LSI [18] models and clustering algorithms like K-
means and agglomerative hierarchical clustering, to more 
sophisticated methods like probabilistic topic models [6]. 

Research on these methods has largely focused on improv-
ing correspondence with “gold standard” human models of 
the items being structured (e.g., gold standard human-
generated categories [9]), or matching human performance 
on various benchmark tasks (e.g., simple A:B, C:D word 
analogies [48]). Some work has examined the value of 
automated sensemaking outputs for complex tasks like 
ideation [20,24], intelligence analysis [57], and conducting 
scientific literature reviews [13]. However, relatively little 
work has compared the value of automated sensemaking 
outputs to human-produced outputs for complex tasks in 
general. One notable exception is a study by André et al [3], 
who found that simple TF-IDF sensemaking over academic 
papers could provide suggestions for papers to attendees at 
an academic conference that were rated at comparable 
levels of relevance as suggestions provided from a human-
generated sensemaking model (via partial clustering). We 
are not aware of any related studies in the context of idea-
tion. This paper explores the cost-quality tradeoffs involved 
in selecting automated vs. manual sensemaking approaches. 

SOLUTION PATH EXTRACTION 
Our goal is to explore the cost-quality curve for current 
“off-the-shelf” methods that would be readily available to 

crowd innovation platforms. Here we describe in more 
detail each of the three points on the cost-quality curve that 
we select for comparison: 1) manual human-human (highest 
cost), 2) machine-human (medium cost), and 3) machine-
machine (lowest cost).  

For comparability, all approaches follow the same general 
process: raw ideas form initial inputs into sensemaking, 
which includes a cluster phase — where similar ideas are 
grouped together — followed by a label phase to produce 
"solution paths" – descriptions of key features shared by 
multiple ideas in a cluster (often with fewer concrete details 
than raw ideas). Each of the three approaches is defined by 
whether humans or machines complete each phase, with the 
intuition that least human involvement (machines complete 
both phases) would be least costly, while maximal human 
involvement (in both phases) would be most costly.  

Datasets 
We extracted solution paths for ideas for two problems: 1) 
new product ideas for a novel “fabric display” (fabric 
display problem), and 2) ideas for improving workers’ 
experience performing HITs on mTurk on mobile devices 
(improve mTurk problem). Both idea datasets were assem-
bled from idea datasets collected in prior studies ([54] for 
the Fabric Display problem, and [40] for the Improve Turk 
problem). The ideas in those datasets were collected from 
mTurk workers, and the authors shared the data with us. We 
randomly sampled 120 ideas for each problem. We chose 
120 ideas because it is small enough to apply best practice 
manual approaches (e.g., affinity diagramming) that would 
be difficult for 1000s of ideas, yet large enough to motivate 
the need for sensemaking and to yield intuitions for scala-
bility comparisons. Examples of solution paths extracted by 
each method are shown in Table 1. 

Sensemaking Methods 

Machine-Machine Solution Path Extraction 
For this method of extracting solution paths, machines 
complete both the cluster and label phases of solution 
extraction. Our goal is to design an automated workflow 
that closely approximates realistic crowd ideation scenarios. 
In realistic scenarios, one very rarely has “gold standard” 
data available to assist with evaluation and tuning of 
complex model parameters. Therefore, we would like to 
choose relatively mature models with well-known proper-

Method Fabric Display Improve Turk 

Machine-Machine advertisements billboards create shirts/pants 
cuffs companies 

time timer site assigned loading  
notification 

Machine-Human use for new locations for advertising send timer alerts 

Human-Human advanced display of advertisements provide notifications for time-sensitive 
activity 

Table 1. Example solution paths extract by each method for both problems. For comparability, we select examples that are close 
in semantic meaning. 



ties that can work relatively well “out-of-the-box” without 
significant parametric tuning. To meet these constraints, we 
chose to do unsupervised feature identification using a 
combination of TF-IDF (widely used in information re-
trieval; no parameter settings required) and LSI (widely 
used in information retrieval; only choose number of 
dimensions), and clustering using the standard K-means 
algorithm (widely applicable; only choose number of 
clusters). In our workflow, we first identify semantic 
features in the set of ideas using TF-IDF and LSI, and then 
use these features to achieve unsupervised clustering of the 
ideas with K-means. We then automatically obtain labels 
for the clusters by finding the most informative keywords 
within each cluster. 

In the cluster phase, ideas are first tokenized, removing 
uninformative (stop) words, and then weighted using TF-
IDF. Each idea then is re-represented as a vector of w TF-
IDF weights (where w is the number words in the corpus of 
ideas). We then use LSI to reduce the dimensionality of the 
vectors. Based on prior experience clustering brainstorming 
ideas, our intuition is that somewhere between 15 to 25 
patterns is often sufficient to adequately describe emerging 
solution patterns. Therefore, we set our LSI model to retain 
15, 20 and 25 dimensions. For each of these parameter 
settings, we then identify solution paths by finding the same 
number of clusters of ideas (i.e., 15, 20 or 25) with the K-
means clustering algorithm. We use the LSI dimension 
weights as features for the ideas. Rather than report the 
running time (which would vary by machine, dataset, and 
implementation of the algorithms), we leave it to the reader 
to examine the well-studied computational complexity 
properties of LSI and K-means and extrapolate accordingly 
to their desired settings. As a ballpark estimate, all our 
clustering runs for the 120 ideas took less than 30 seconds. 

For the label phase, we again select a method that would 
not require significant parameter tuning. To do this, we 
treat each cluster as a document, and compute TF-IDF 
weights for all words. We then choose the top n words with 
the highest TF-IDF weights within each cluster. N is deter-
mined by the average length of human labels (minus 

stopwords). The intuition behind this method is to identify 
words that distinguish between the clusters. 

Machine-Human Solution Path Extraction 
For this method, the machines complete the cluster phase, 
but humans are recruited for the label phase. The cluster 
phase is the same as the machine-machine method (i.e., 
clusters generated by combination of LSI and K-means). In 
the label phase, the labelers received each of the M clusters 
of ideas identified in the machine-clustering phase. The 
labeling task was completed in a Google Document, which 
contained 1) instructions for labeling, 2) the problem 
description, and 2) each of the M clusters as unlabeled lists 
with blank headers. Labelers described clusters by typing a 
description in the blank headers (see Fig. 1, left panel). 

Labelers received the following instructions: “Here is a set 
of 120 ideas for the problem, divided into clusters of ideas. 
Each cluster of ideas is meant to represent a solution 
pattern for the problem. Recall that we would like to 
provide these patterns as inspiration for future brainstorm-
ers who will also work on this problem. Your goal is to 
write a meaningful description for each cluster. Good 
descriptions capture the essential shared theme of a group 
of ideas in an appropriately specific fashion (i.e., contain 
enough detail to be useful to future brainstormers, but are 
not simple restatements of each idea). Ideally, they capture 
a theme shared by all ideas in their cluster; in some (rare) 
cases, you may find it difficult to discern the common 
theme: in this case, please do your best to describe a 
pattern shared by at least 2-3 ideas in the cluster. As a 
good test, good descriptions can fit well into the template 
‘How can we _______________ to solve the problem?’.” 

A set of three research assistants —advanced HCI design 
students — served as labelers. Labelers on average took 
approximately 28 minutes to complete labeling for each 
problem. 

This approach represents a midpoint on the cost-quality 
tradeoff curve, and also allows us to potentially tease apart 
the value provided by clustering (which influences the 
semantics of the labels produced) and labeling (which vary 
in such features as coherence, specificity, and phrasing) 
provided by machines and humans. 

Human-Human Solution Path Extraction 
For this method, humans performed both cluster and label 
phases in a single task. The clusterer-labelers received all 
120 ideas in a single stack. Each idea was printed out on a 
slip of paper. Clusterer-labelers then sorted ideas into 
clusters on a 45” by 45” table, and labeled clusters by 
writing descriptions on Post-It notes. Figure 1 (right panel) 
shows the physical setup of the task. 

Clusterer-labelers received a description of the problem as 
well as the following instructions: “Here is a set of 120 
ideas for the problem. Please identify solution patterns in 
the set of ideas. We would like to provide these patterns as 
inspiration for future brainstormers who will also work on 

      
Figure 1. Screenshot of human labeling task (left) physical 

setup of human cluster-label task (right)  



this problem. Do this by grouping ideas on the whiteboard 
into clusters that define patterns and writing descriptions of 
those patterns. Good descriptions capture the essential 
shared theme of a group of ideas in an appropriately 
specific fashion (i.e., contain enough detail to be useful to 
future brainstormers, but are not simple restatements of 
each idea). As a good test, good descriptions can fit well 
into the template ‘How can we _______________ to solve 
the problem?’ You may identify clusters as large or as small 
as you like (even singleton clusters). Please do not create 
miscellaneous clusters or sort ideas by quality.” 

A different set of three research assistants — advanced HCI 
design students — performed this task. On average, cluster-
ing and labeling a single problem took approximately 52 
minutes, significantly longer than just labeling. An average 
of 22 solution paths were identified for the Fabric Display 
problem, and 16 for the Improve Turk problem. Note that 
this task could be performed using digital tools; however, 
we chose to implement these steps on paper to have as close 
a match as possible to existing “off-the-shelf” human 
sensemaking approaches (e.g., affinity diagramming). 

IDEATION EXPERIMENT 

Overview 
With extracted solution paths, we then conducted an online 
ideation experiment to compare the relative ideation value 
of the different sensemaking approaches, compared to 
simple exposure to all prior ideas, or no stimulation. 

Method 

Participants 
We recruited 139 mTurk workers (42% female, mean age = 
32.6 years, SD = 9.6) for this study. To ensure quality data, 
all participants had to have approval rates of at least 95% 
with at least 100 completed HITs. Participants were paid 
$2.00 for about 20 minutes of participation (on average), 
yielding an average hourly rate of $6/hour. 

Study Design 
Participants were randomly assigned to one of 5 conditions: 
1) unconstrained (control, N=21), 2) viewing all 120 prior 
ideas for the problem (all-ideas, N=24), viewing 3) ma-
chine-labeled solution paths generated for machine-
generated clusters (machine-machine: least costly, N=32), 
4) human-labeled paths generated for machine-generated 
clusters (machine-human: somewhat costly, N=34), or 5) 
with human-labeled paths generated for human-generated 
clusterings of ideas (human-human: most costly, N=28). 

Within the path conditions, participants were randomly 
assigned one of the 3 path sets generated using that solution 
path extraction method. 

Brainstorming Task 
Participants generated ideas for both the Fabric Display and 
Improve Turk problems. 

Brainstorming Interface 
Participants generated ideas using a simple ideation inter-
face. Inspirations (whether ideas or solution paths) were 
provided to participants in an “inspiration feed” in the right 
panel of their interface (see Figure 2). Participants could 
“bookmark” particular inspirations that they found helpful. 
No sorting and filtering options were provided. The limited 
sorting/filtering available in the all-ideas condition might 
be considered primitive, but it is actually similar to many 
existing platforms that might provide rudimentary filtering 
by very broad, pre-defined categories (that may be reused 
across problem). Participants in the control condition 
generated ideas with a simpler ideation interface that 
removed the inspiration feed.   

Procedure 
After providing informed consent, participants experienced 
a brief tutorial to familiarize themselves with the interface. 
Embedded within the tutorial was an alternative uses task 
(where participants were asked to think of as many alterna-
tive uses as possible for a bowling pin). Participants then 

 
Figure 2. Screenshot of ideation interface. Actual inspirations from the machine-machine condition are shown. Participants 

enter ideas on the left, and view inspirations on the right. Participants can star inspirations they find useful.  



generated ideas for both the Fabric Display and Improve 
Turk problems. Participants were given 8 minutes to work 
on each problem, and the order of the problems was ran-
domized across participants. Participants in the inspiration 
conditions received the following instructions regarding the 
inspirations: “Below are some inspirations to boost your 
creativity. Feel free to create variations on them, elaborate 
on them, recombine them into new ideas, or simply use 
them to stimulate your thinking. If you find an inspiration to 
be helpful for your thinking, please let us know by clicking 
on the star button! This will help us provide better inspira-
tions to future brainstormers.” After completing both 
problems, participants then completed a brief survey with 
questions about demographics and the participants’ experi-
ences during the task.  

Measures 
Conceptually, we distinguish process (fluency and breadth 
of search) from outcome (novelty, quality) measures for 
exploring the impact of sensemaking on ideation. This 
distinction follows previous design ideation research [52]. 
Theoretically, our process measures also map to Guilford’s 
[28] notion of divergent thinking as a process basis for 
creativity, while our outcome measures map to standard 
theoretical notions of creative products as a combination of 
novelty and usefulness/practicality [1,31,50,51].  

Fluency: Number of Ideas 
Fluency was operationalized as the number of ideas gener-
ated by a participant for a given problem. 

Breadth of Search in Solution Space 
We used LSI to characterize the nature of participants’ 
search through the solution space. While LSI can be more 
accurate with longer texts (our raw ideas are 8-10 words, on 
average), researchers have successfully used LSI to model 
creativity with similar-length texts [23,30]. To maximize 
the accuracy of the model, for each problem we enriched 
the model with the full set of ideas previously collected 
from mTurk workers for each of the two problems (1,354 
for Fabric Display, and 2,287 for Improve Turk). Thus, the 
total sizes of the training corpora for the LSI models were 
2,354 ideas for Fabric Display (prior ideas plus 1,000 ideas 

from our experiment) and 3,403 for Improve Turk (prior 
ideas plus 1,116 ideas from our experiment). 

We used the same procedure to build the LSI space as with 
the first step of machine clustering (i.e., weight words with 
TF-IDF before estimating LSI), except that we retained 200 
dimensions (in keeping with prior rules of thumb for larger 
datasets [42]). 

Breadth was operationalized as the mean pairwise distance 
between a given participant’s ideas. Higher mean pairwise 
distance indicates that participants’ ideas are sampled from 
very diverse regions of the solution space. Distances were 
calculated by subtracting pairwise cosines from 1, yielding 
distance scores between 0 (semantically identical) and 1 
(semantically very different). 

Novelty and Quality of Ideas 
To explore impact on novelty and quality, we obtained 
ratings of novelty and quality for ideas for the Improve 
Turk problem only, due to concerns about mTurk workers’ 
ability to provide valid ratings for the Fabric Display 
problem. MTurk workers are suitable judges for the Im-
prove Turk problem, since they have first-hand expertise in 
the domain of worker experience on mTurk, and are also 
potential users of mTurk mobile products. 

414 workers from mTurk rated the ideas for novelty and 
quality. Novelty was operationalized as the degree to which 
an idea was novel, ranging from a scale of 1 (Extremely 
Obvious) to 7 (Extremely Novel). Quality was operational-
ized as the degree to which an idea would be useful for 
solving the problem, assuming it was implemented (i.e., 
separating out concerns over feasibility), ranging from a 
scale of 1 (Not Useful at All) to 7 (Extremely Useful). Each 
worker rated a random sample of approximately 20 ideas.  

While the raw inter-rater agreement was relatively low 
(Krippendorff’s alpha = .23 and .25, respectively), the 
overall aggregate measure had acceptable correspondence 
with each judges’ intuitions. Computing correlations 
between each judges’ ratings and the overall aggregate 
score yielded average correlations of .52 for novelty and .58 
for quality. To deal with potential differences in usage of 

 High Quality Low Quality 

 

High 
novelty 

(1.04, 1.51) Allow demographic info to be filled out 
automatically so it doesn't have to be done each time 

(1.52, 1.01) Virtual keyboard that allows you to have a 
row of buttons for only the keys that are used in the 
task, instead of finding them on the normal keyboard 

(1.22, -1.09) Fingerprint Captchas are possible. 

(1.10, -1.74) music to focus worker 

 

Low 
novelty 

(-0.87, 1.04) Grey out HITS that have been done before 
and cannot be repeated 

(-1.00, 1.16) make it easy to find good hits 

(-1.11, -1.38) Be able to complete more hits 

(-1.58, -1.83) Have direct contact information such 
as a phone number clearly listed for MTurk 
workers. 

Table 2. Example ideas at each combination of low and high novelty and quality for the Improve Turk problem.  



the rating scale across raters (e.g., some might only use the 
upper end of the scale), we normalized scores within raters 
(i.e., difference between rating and mean rating provide by 
rater, divided by the standard deviation of the raters’ 
ratings). Table 2 shows examples of low and high novelty 
and quality ideas in the data. 

Inspiration Use: Number of Bookmarked Inspirations 
We also measured the degree to which participants found 
inspirations to be useful by counting the number of inspira-
tions that were bookmarked by each participant. 

Control Measures 
Our primary control measure is participants’ performance 
for the baseline fluency task (i.e., number of bowling pin 
alternative uses generated). This measure captures aspects 
of participants’ base level of creative fluency (as a proxy 
for individual creativity [27]), as well as aspects of motiva-
tion and conscientiousness; all of these factors are expected 
to influence creative performance, and are therefore ac-
counted for in our analyses by including baseline fluency as 
a covariate predictor in our statistical models. 

Results 
Participants generated a total of 2,116 ideas across the two 
problems, across conditions (1,000 ideas for Fabric Display 
and 1,116 for Improve Turk). 

Machine-Generated Paths Stimulate More Ideas 
Table 3 shows the means and standard errors for each of the 
conditions. We first estimated separate ANCOVAs with 
condition as a main effect and baseline fluency as a control 
covariate for each of the two problems. For Fabric Display, 
there was no statistically significant overall effect of condi-
tion, F(4,133)=1.11, p=0.35. However, planned contrasts 
suggest that both the all-ideas (model beta=1.9, p=0.08, 
Cohen’s d=0.49) and machine-machine conditions (be-
ta=1.8, p=0.08, d=0.42) trend towards more ideas than 
control (see Table 3, left column). That is, adjusting for 

baseline fluency, participants who saw all prior ideas or 
machine-generated solution paths generated about 2 more 
ideas than participants who received no stimulation. In 
terms of standardized effect sizes, the Cohen’s d of about 
0.5 corresponds to a medium-sized effect according to 
Cohen’s [15] classification of effect sizes in the behavioral 
sciences. For Improve Turk, there was no significant overall 
effect of condition, F(4,133)=1.40, p=0.23. However, the 
machine-machine condition did display a significant trend 
towards more ideas than control, beta=2.5, p=0.04, d=0.41 
(see Table 3, right column). Similar to the Fabric Display 
problem, adjusting for baseline fluency, participants who 
saw machine-generated paths generated about 2 more ideas 
than participants who received no stimulation. 

Machine-Generated Paths Increase Breadth of Search 
Table 4 shows the means and standard errors for each of the 
conditions. Baseline fluency was not significantly correlat-
ed with breadth of search in either problem (r=.06, p=.47 
for Fabric Display, and r=.03, p=.76 for Improve Turk). 
Therefore, we estimated separate ANOVAs with condition 
as the only factor for each of the two problems. For the 
fabric display problem, there was a marginally significant 
overall effect of condition, F(4,133)=2.12, p=0.08. Planned 
contrasts suggest that both the machine-machine (be-
ta=0.06, p=.01, d=0.65) and machine-human paths (be-
ta=0.02, p=.02, d=0.57) lead to significantly more breadth 
of search than control, while human-human paths are 
marginally significantly better than control (beta=0.05, 
p=.05, d=0.52). All effect sizes are medium-sized, by 
Cohen’s classification. For the Improve Turk problem, the 
overall main effect of condition is not statistically signifi-
cant, F(4,139)=1.53, p=0.20. However, planned contrasts 
suggest that both all-ideas (beta=0.07, p=.04, d=0.72) and 
machine-machine conditions (beta=0.06, p=.04, d=0.57) 
are better than control. The all-ideas effect is close to  
“large”, by Cohen’s classification (the suggested cut-off is 
0.8), while the machine-machine effect is medium-sized. 

 Breadth of Search 

 Fabric display Improve Turk 

Condition M (SE) M (SE) 

Control 0.89 (0.02) 0.81 (0.03) 

All-Ideas 0.93 (0.02) 0.89 (0.03)* 

Machine-Machine 0.95 (0.02)** 0.89 (0.02)* 

Machine-Human 0.95 (0.02)* 0.86 (0.02) 

Human-Human 0.94 (0.02)m 0.86 (0.03) 

* p < .05 vs. control, mp < .10 vs control 

Table 4. External stimulation increases breadth of search by 
relative to control condition, for both problems. 

 Number of ideas 

 Fabric display Improve Turk 

Condition M (SE) M (SE) 

Control 6.46 (0.79) 7.13 (0.93) 

All-Ideas 8.40 (0.77) m 8.32  (0.91) 

Machine-Machine 8.29 (0.67) m 9.59 (0.78) * 

Machine-Human 7.56 (0.63) 7.43 (0.75) 

Human-Human 7.30 (0.68) 8.13 (0.81) 

* p < .05 vs. control, mp < .10 vs control 

Table 3. Machine-generated paths increase number of 
ideas relative to control condition. Means are adjusted for 

baseline fluency. 



Solution Paths Do not Impact Novelty of Ideas 
Table 5 shows the means and standard errors for each of the 
conditions. Baseline fluency was not significantly correlat-
ed with mean novelty. Therefore, we estimated an ANOVA 
with condition as main effect for mean novelty of ideas. 
There was no main effect of condition on mean novelty of 
ideas, F(4,131)=0.79, p=0.53. 

Machine-Generated Paths Reduce Quality of Ideas 
Table 5 shows the means and standard errors for each of the 
conditions. Baseline fluency was not significantly correlat-
ed with mean quality. Therefore, we estimated an ANOVA 
with condition as main effect for mean quality of ideas. 
There was a marginally significant main effect of condition 
on mean quality of ideas, F(4,129)=2.15, p=.08. Planned 
contrasts suggested that the mean quality of ideas in the 
machine-machine (M=–0.08, SE=0.06) and machine-
human conditions (M=–0.02, SE=0.05) were of signifi-
cantly lower quality than in the control condition (M=0.17, 
SE=.07), beta=-.25, p=.01, d=0.69, and beta=–.18, p=.04, 
d=0.54. Ideas in the human-human condition were of 
marginally lower quality (M=0.01, SE=0.06) than in the 
control condition (beta=-.16, p=.09, d=0.47). All effects are 
approximately medium-sized, by Cohen’s classification. 

Equal Number of Good Ideas Across Conditions 
Given the reduction in quality associated with machine 
labels, we wondered about the impact of those paths on 
aggregate creativity (a combination of both novelty and 
quality). Ideation platforms might accept a slight drop in 
mean quality as long as overall creativity does not suffer. 
We follow Reinig et al [49] to measure creative output as 
the number of good ideas, where a good idea is defined as 
an idea with novelty and quality scores that are both above 
the mean (see Table 2, upper right quadrant, for examples).  

An ANCOVA controlling for baseline fluency showed no 
main effect of condition, F(4,128)=0.98, p=.42; further, the 
trends approximately track the statistical patterns for total 
number of ideas, suggesting that participants across condi-
tions are generating good ideas at a fairly constant rate. 
Indeed, when examining the proportion of good ideas as a 

dependent measure, an ANCOVA again shows no signifi-
cant differences across conditions, F(4,128)=.61, p=.66. 

DISCUSSION  
In this research, we examine the relative value of different 
approaches to inspiring crowd ideators with prior ideas. We 
empirically test whether abstracted solution paths (generat-
ed by a range of sensemaking methods) can enable ideators 
to better benefit from prior ideas (as measured by impact on 
fluency, breadth, and novelty and quality of ideas). We also 
empirically explore how the ideation value of solution paths 
varies with the cost of the sensemaking strategy that pro-
duced them. Our study yields two main sets of findings, 
which we discuss in turn. 

No Consistent Benefit of Solution Paths 
The first main set of findings is that solution paths do not 
consistently improve ideation more than simply showing all 
raw ideas to ideators. With respect to fluency, for the 
Improve Turk problem, machine-machine paths (but not 
machine-human, human-human, or all-ideas) improved 
fluency over control; however, for the Fabric Display 
problem, all-ideas and machine-machine paths both 
improved fluency. With respect to breadth of search, 
solution paths (regardless of source) improved breadth of 
search over control for the Fabric Display problem; howev-
er, for the Improve Turk problem, only all-ideas and 
machine-machine paths improved breadth over control. 
None of the solution paths conditions improved novelty 
over control, and some (human-machine and machine-
machine) even reduced quality relative to control, while 
all-ideas did not.  

There is a range of possible explanations for why solution 
paths did not improve ideation in our experiment. First, 
perhaps the solution paths reduced quality because they 
were potentially derived from both bad and good ideas 
(recall that we randomly sampled the initial set of 120 ideas 
from the prior datasets). However, it seems unlikely to have 
been the main driving factor. While one participant who 
saw all ideas did complain in the open-ended portion of our 
post-task surveys that there were many bad ideas, nobody 
voiced this complaint in the paths conditions. Further, one 

 Mean Novelty Mean Quality 

Condition M (SE) M (SE) 

Control 0.04 (0.07) 0.17 (0.07) 

All-Ideas 0.02 (0.07) 0.07 (0.07) 

Machine-Machine 0.06 (0.06) -0.09 (0.06)** 

Machine-Human 0.03 (0.06) -0.02 (0.06)* 

Human-Human -0.09 (0.07) 0.01 (0.07)m 

* p < .05 vs. control, mp < .10 vs control 

Table 5. External stimulation does not impact novelty of 
ideas, but machine-generated paths reduces quality relative 

to control condition. 

 
Figure 3. Participants generate similar numbers of good 

ideas across conditions, adjusted for baseline fluency. 



participant (in the all-ideas condition) specifically noted 
that, “a lot of people had some good ideas about different 
features for a Mturk app.” Indeed, ideas that were more 
similar to the initial 120 raw ideas were considered to be of 
slightly higher quality: we found a small but significantly 
positive correlation between LSI similarity of ideas vs. 
initial 120 raw ideas and quality ratings, r=.07, p=.01. 
Nevertheless, it is possible that the presence of even one or 
two bad ideas might be sufficient to contribute to fixation.  

Second, it could be that that there were too many inspira-
tions to sift through. However, 15-25 inspirations seems 
like a manageable enough number of items to scan through 
relatively quickly and find interesting ideas to build on. We 
also specifically designed the system to be able to fit all of 
the inspirations on one screen in the paths conditions (so 
that there would not need to be much scrolling). Indeed, a 
number of participants in the paths conditions appreciated 
that they could just glance over to see inspirations, while 
many participants in the all-ideas condition complained 
that there were too many inspirations to consider at once. 

A more interesting alternative explanation might be that, 
rather than providing bad solutions, the stimuli were steer-
ing participants away from good solutions, due to a desire 
to not repeat ideas (despite our instructions saying it was ok 
to build on or recombine inspirations). Indeed, some partic-
ipants said in the survey that they were influenced by the 
inspirations in this way. For example, one participant (in 
the machine-human condition) said, “I could just read 
them and see if an idea I had had already been provided 
and if it was I would move on to the next idea.” One partic-
ipant (in the same condition) even said, “I would come up 
with an idea and then notice it was already listed on the 
inspiration list, so I felt discouraged about that.” Another 
participant (in the machine-machine condition) said that it 
was challenging “trying not to repeat the inspirations. The 
first inspiration was about a movie theater, which coinci-
dentally, was also similar to my first idea.” If this happened 
often enough, participants might have searched more 
broadly, but away from any good ideas that happened to be 
represented in the solution paths. In fact, perhaps the 
relative ease of gaining a broad sense of the solution space 
with solution paths—rather than with the 120 raw ideas— 
could explain why quality was reduced only in the paths 
conditions. Relatedly, participants might have felt over-
whelmed by the prospect of adding something new to the 
existing solution space. One participant in the machine-
human condition said, “There were so many inspirations 
for the second brainstorming task that it was hard to come 
up with anything new to add.” 

Overall, these findings suggest that it may not be straight-
forward to translate the benefits of abstracted solution paths 
from individual and group settings into a crowd setting. For 
example, if providing tens of abstracted solution paths at 
once as potential inspirations could be overwhelming, 
alternative delivery mechanisms, such as on-demand 

delivery of individual inspirations [10,54], or focusing 
ideators on a single theme [22,45]. 

Automated Sensemaking Can Improve Ideation 
The second main set of findings concerns the value of 
machine-generated paths. In our data, the only form of 
stimulation that provided consistent benefits was machine-
generated solution paths, which improved fluency and 
breadth across both problems. However, this increase in 
fluency and breadth came at the cost of reduced quality of 
ideas. We did also find, however, that the reduction in 
quality did not hamper the production of good ideas (i.e., 
ideas that are both novel and of high quality). Thus, our 
findings suggest that machine-generated paths can improve 
divergent thinking (generating many possible ideas), but not 
necessarily creativity (generating high-quality, novel ideas). 

One explanation for why these solution paths (though 
hypothesized to be of low intrinsic quality), might have 
benefited ideation is that participants were essentially 
leveraging them as keyword clouds. For example, one 
participant in the Machine-Machine condition said, “The 
inspirations seemed nonsensical when read as a whole, but 
one or two words would catch my attention and spark an 
idea.  For example, I think one of the ones for the fabric 
said "bathroom" or "towel" or something like that.  That 
gave me an image of a shower curtain and having video 
play on the shower curtain.  The inspirations were jumping 
off points.” Another participant said, “I would list as many 
ideas as possible and then browse quickly through key 
words and run with whatever came to mind. Often I would 
combine words and that would help me think of an original 
idea.” In theory, the keywords generated using our ma-
chine-machine workflow should identify words that can 
best discriminate between major patterns of solutions in the 
set of ideas. It would be valuable to test whether these paths 
benefit ideators more than simpler ways of generating 
keyword clouds (e.g., frequency-based).  

This set of findings suggests that the relationship between 
cost and quality (in terms of value for ideation) might not 
be simply linear, monotonic, or even positive. From a 
practical standpoint, large-scale ideation platforms could 
gain value from employing very simple automated sense-
making methods (such as the workflow we used in this 
study). These methods might provide the most value in the 
early stages of the innovation process, where the focus is on 
quickly exploring as much of the space as possible before 
focusing in on more promising solution approaches, and 
some reduction in quality might be acceptable in exchange. 
Our results suggest that, accounting for our fluency and 
breadth effects, platforms that use machine paths may need 
fewer people to achieve comparable coverage of the solu-
tion space (vs. not providing any exposure to prior ideas). 

FUTURE WORK 
Our finding that solution paths did not consistently benefit 
ideators (over providing all ideas or no ideas) runs counter 
to theory, and suggests caution when using solution paths in 



a crowd setting. It will be important for future research to 
test the potential explanations we explored for the lack of 
(and even slightly negative) effect of solution paths, partic-
ularly since many of these factors are likely to be present in 
collective innovation settings (e.g., large number of poten-
tial inspirations, presence of some bad ideas, pressure to 
come up with original ideas rather than build on ideas). 

It would also likely be useful to investigate task designs and 
workflows that could overcome some of those potential 
challenges. For example, could rephrasing inspirations as 
questions (e.g., “How can we…?”) mitigate participants’ 
tendency to move away from solution paths? Could we also 
intelligently divide up solution paths to different portions of 
the crowd such that they can explore a smaller set of 
solution path in depth and would this help mitigate potential 
cognitive load issues from seeing many inspirations? 
Would it be useful to integrate evaluation into the sense-
making process to more quickly weed out bad ideas? Future 
efforts to enable more collaborative large-scale ideation 
could benefit from examination of these questions. 

Also, in this study we used a fully manual approach to 
human sensemaking. But, methods exist for sensemaking 
using distributed human computation [2,3,14,26]. Future 
work might fruitfully explore how the value of human 
sensemaking for crowd ideation might not only depend on 
task design and workflow factors, but whether such distrib-
uted workflows could provide similar benefits. 

Finally, future work can explore the generality of these 
findings. Our findings were similar across the two problems 
we examined; thus, our results seem robust to domain 
expertise effects. Also, because our participants were paid 
mTurkers, our results might map on to other reward-
motivated situations (e.g., contests). However, we are 
uncertain if they generalize to volunteer communities. 
Participant motivation may be an important moderating 
effect in these settings, particularly since the different 
sensemaking approaches impose varying degrees of cogni-
tive load on ideators (e.g., less cognitive load for machine-
generated paths compared to human-generated paths). 

CONCLUSION 
In this paper, we examined the ideation value of different 
approaches to sensemaking over prior ideas, using an online 
ideation experiment that compares ideation under no 
stimulation, exposure to all ideas, or abstracted solution 
paths from fully automated, machine-human hybrid, or 
fully manual sensemaking approaches. Our results suggest 
that simple automated sensemaking methods can provide 
some value (e.g., increased fluency, breadth of search) to 
large-scale ideation platforms. Our results also motivate 
further research on how to best enable crowd ideators to 
benefit from (human) sensemaking outputs. 
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