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ABSTRACT 
 This work lends insight into the meaning and impact of “near” 
and “far” analogies. A cognitive engineering design study is presented 
that examines the effect of the distance of analogical design stimuli on 
design solution generation, and places those findings in context of 
results from the literature. The work ultimately sheds new light on the 
impact of analogies in the design process and the significance of their 
distance from a design problem.  In this work, the design repository 
from which analogical stimuli are chosen is the U.S. patent database, a 
natural choice, as it is one of the largest and easily accessed catalogued 
databases of inventions.  The “near” and “far” analogical stimuli for 
this study were chosen based on a structure of patents, created using a 
combination of Latent Semantic Analysis and a Bayesian based 
algorithm for discovering structural form, resulting in clusters of 
patents connected by their relative similarity.  The findings of this 
engineering design study are contextualized with the findings of recent 
work in design by analogy, by mapping the analogical stimuli used in 
the earlier work into similar structures along with the patents used in 
the current study.  Doing so allows the discovery of a relationship 
between all of the stimuli and their relative distance from the design 
problem. The results confirm that “near” and “far” are relative terms, 
and depend on the characteristics of the potential stimuli.  Further, 
although the literature has shown that “far” analogical stimuli are more 
likely to lead to the generation innovative solutions with novel 
characteristics, there is such a thing as too far. That is, if the stimuli 
are too distant, they then can become harmful to the design process. 
Importantly, as well, the data mapping approach to identify analogies 
works, and is able to impact the effectiveness of the design process. 
This work has implications not only in the area of finding inspirational 
designs to use for design by analogy processes in practice, but also for 
synthesis, or perhaps even unification, of future studies in the field of 
design by analogy. 
 

INTRODUCTION 
 Design-by-analogy is a practice in which designers use solutions 
from other domains in order to gain inspiration or insight for the 
design problem at hand, and has been shown to be an effective method 
for inspiring innovative design solutions [1-4]. However, more work is 
needed to build an understanding of which analogies presented to 
designers achieve the best design outcomes, as well to develop 
methods for finding these analogies in an efficient way.  Here, design-
by-analogy is studied from a cognitive perspective, and a patent 
structuring methodology [5, 6] is used to both find analogical stimuli 
for designers, as well as to analyze the results. The results are 
compared with previous work to gain a more complete understanding 
of the discovered effects.  First, we review the current understanding 
of the use of analogy in design, and competing theories regarding the 
benefits of near vs. far-field analogy in design.  Then, we discuss the 
computational design tools that have been created to facilitate design-
by-analogy, and the technical foundation of the computational method 
we use for aiding in the location of these analogies. 
 
1.1 Design-by-Analogy 
 The use of analogy in design has been studied to gain an 
understanding of how it affects the ideation process and outcomes [7–
12], with some studies specifically examining how the introduction of 
analogies with different levels of applicability to the design problem 
affects individual designers [3, 7]. Other work has examined the 
timing of the introduction of external analogical stimuli within the 
ideation process, for example by studying the effects of “open goals” 
[7-9].  Additionally, work has been done to examine the effects of 
biologically inspired design by analogy on design tasks of solution 
generation, evaluation, and explanation and analogical methods such 
as direct transfer, relational abstraction, and problem transformation 
[13].  The work presented here examines design solution generation 
based on analogical stimuli, and does not explore the particular 
methods by which designers might generate or use analogies.  
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 A large area of exploration in the study of design-by-analogy [14-
16], and the focus of this work, is analogical distance.  In the literature, 
analogical distance is typically operationalized and studied as a 
dichotomous variable, with analogies being either near-field or far-
field. Near generally means that the analogy is found in the same or 
similar domain, while far generally means that it is found from a 
different domain.  Further, near-field analogies tend to share a 
significant number of surface features with the design problem, while 
far-field tend to share little or none.  Far-field analogies, however, can 
have functional similarities to the design problem that make them apt 
for analogical transfer.  Some literature points to far analogies as being 
the most promising for creative insights, in which the two domains 
being compared are very different [17]. Work by Dahl and Moreau 
showed that the number of far-field analogies used by designers during 
ideation is positively related to the originality of proposed solutions, as 
rated by a sample of potential customers [18]. Wilson et al. found that 
idea novelty increased with exposure to surface dissimilar design 
examples relative to using no examples, and variety of ideas decreased 
with exposure to surface similar examples relative to surface dissimilar 
examples [19]. Often, it is even recommended to use random 
analogical stimuli, which can perhaps be thought of as “extremely far-
field”, to make free or wild associations when ideating, as it can 
encourage wider search of the design space and potentially higher 
quality ideas as a result [20].   
 Other literature questions the benefit of far-field analogies [21, 
22].  Far-field analogies can be hard to conceive as relevant to a design 
problem [1], and they can be cognitively challenging to retrieve from 
memory [23, 24]. It is evident that a cohesive theory on the effect of 
analogical distance on design outcomes does not currently exist.  One 
possible reason for this is that there is a lack of consistency and 
standardization of meaning of the terms “near” and “far,” making 
results difficult to compare. Analogical distance is a continuum rather 
than a simple dichotomy with categories applied in somewhat arbitrary 
regions of the continuum; thus, existing studies in the literature may be 
examining and contrasting different points on the continuum from near 
to far. It is possible that more than two meaningful levels of distance 
exist along the continuum, with potentially different patterns of effects 
at these different points on the continuum. For instance, the potential 
usefulness of analogical stimuli for supporting creative ideation could 
vary in a curvilinear fashion from near to far, with very near and very 
far stimuli being less helpful (e.g., due to low novelty at the near end 
and low relevance at the far end).  
 Aside from what kinds of analogies are most beneficial and 
stimulating for designers, it remains unclear how to find these 
analogies in an efficient or automatic way.  There have been 
methodologies developed to employ design-by-analogy, however, 
including Synectics [25]- group design through analogy types; 
French’s work on inspiration from nature [26]; a semantic active verb 
mapping of design problems known as the WordTree method [27-29]; 
Biomimetic concept generation [30]- a systematic tool to index 
biological phenomena that links to textbook information; and 
analogous design using the Function and Flow Basis [31, 32]- 
analogous and nonobvious product exploration using the functional 
and flow basis.  Though these “pen-and-paper” and semi-automated 
methods can be beneficial, they can also be cumbersome or inefficient, 
highlighting one of the major benefits of computational design tools, 
reviewed next. 
 
1.2 Computational Design Tools 
 Computational design tools provide a promising way of 
efficiently and automatically finding analogical stimuli with which to 
inspire designers.  A natural source for analogical stimuli is the U.S. 

patent database, which is the source of analogies for the work 
presented here, as well as a great deal of other research, including 
TRIZ [33] using heuristic rules to help engineers overcome impasses 
in functional reasoning by searching through patents; an axiomatic 
conceptual design tool [34] combining TRIZ and functional basis; 
patent mining [35-37] characterizing them by citations, claims, 
average number of words per claim, number of classes that the patent 
spans, etc.; design repository work incorporating function-based 
search using Chi Matrix and Morphological Matrix techniques [38]; 
PatViz [39], allowing for visual exploration of iterative and complex 
patent searches and queries using all types of patent data, including 
full text, which relies on structures that are either predefined or user-
defined classification schemes; patent database search using a mapped 
functional basis [40]; a BioMedical Patent Semantic Web [41] finding 
semantic associations between biological terms within biomedical 
patent abstracts and returning a ranked list of patent resources and a 
fully connected Semantic Web that displays the relationships between 
the important terms and between resources; and a topic model based 
taxonomy or hierarchical structure only used to categorize the 
remaining documents into “topics” [42].  Our work is differentiated 
from these efforts in that it focuses on using the full textual content of 
the patents, which it is hoped will allow for richer outcomes, on 
structuring design repositories and more open ended analogical 
transfer, and on multiple structure types generated using a hierarchical 
Bayesian algorithm.  

The size and complexity of the U.S. patent database presents 
considerable challenges to making it useful to designers. The 
methodology for structuring patents, first presented by Fu et al. in 
2011 [5, 6], and briefly reviewed here, enables the extraction of their 
interrelatedness and interconnectedness.  Ultimately, designers might 
be able to use these structures to strategically choose analogical stimuli 
to expose themselves to, or even traverse and explore the space in a 
more intentional and meaningful way.  Designers have the potential to 
create more innovative designs with more efficient and insightful 
access to analogical stimuli. We delve into the first steps of using these 
structures in this manner by testing their output with a cognitive 
engineering design study, to be described in Section 2.3. The method 
and algorithm for creating these structures is presented next. 

 
1.3 Discovering Structural Form 

There is a history of describing human cognition using Bayesian 
models [43], and this link between the Bayesian algorithm and human 
cognition is a main motivation for choosing this algorithm.  The closer 
the output is to human conceptualization of the data or information, the 
more easily understood and useful it will be to humans in design 
practice.  
 Kemp and Tenenbaum [44] use Bayes Rule to calculate the 
probability that the data has structure S and form F given data D.  A 
form is defined by the graph grammar that is used to create it.  These 
forms, including a partition, chain, order, ring, tree, hierarchy, grid, 
and cylinder, and their associated graph grammars, are described in 
more detail in the source literature [44].  These structures originate 
from psychology literature [45] and appear in formal models in many 
different research efforts [46-57]. Kemp and Tenenbaum argue that the 
structural forms included in the algorithm are often and commonly 
found, are “useful for describing the world, and that they spring to 
mind naturally when scientists seek formal descriptions of a domain” 
[44]. Structures have been used successfully to uncover previously 
unconsidered or unknown relationships in biology and chemistry – i.e., 
Linneaus’ discovery of the tree structure that best describes the 
relationships between living organisms, or Mendeleev’s periodic 
structure of elements [44].  The Bayesian algorithm for discovery of 
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structure in the patent database can facilitate a meaningful exploration 
of potentially analogous solutions, and potentially stimulate the 
discovery of useful, perhaps previously unconsidered, relationships 
and functional solutions by designers. 
 A structure S is a particular instantiation of a form F.  To be clear, 
a graph of data D with a certain form can be represented by a number 
of different configurations, or structures.  The three terms that go into 
calculating this posterior probability, which serves as the score of a 
particular structural form within the algorithm, were chosen and 
calculated as follows [43]: 

 P(S, F|D) α P(D|S) P(S|F) P(F), where: 
1. P(F), the prior on the space of forms, is a uniform 

distribution over the forms under consideration.  
2. P(S|F), the prior on the structures, favors graphs where k, the 

number of clusters, is small:  P(S|F) α θk if S is compatible with F, 
and P(S|F) = 0 otherwise; here, θ = e-3.  

3. P(D|S), the likelihood, measures how well the structure S accounts 
for the data D.  P(D|S) will be high if the features in D vary 
smoothly over the graph S, that is, if entities nearby in S tend to 
have similar feature values.  

4. The normalizing constant, the marginal probability, is calculated 
using set theory, as a sum of the products of the number of F-
structures with k occupied cluster nodes and the number of ways to 
partition n elements into k nonempty sets.  
 

1.4 Latent Semantic Analysis 
Latent Semantic Analysis (LSA) is used to pre-process design 

document texts (here, patent texts) in order to extract the contextual 
similarity of documents [58]. LSA has been successfully used in 
studies of communication among designers [59, 60] and functional 
content in engineers’ descriptions of devices [61].  The output is a 
similarity matrix [62-64], which serves as the input to Kemp and 
Tenenbaum’s algorithm.  LSA has four main steps: 
1. Creating a word-by-document matrix, in which the columns 

represent the documents, the row represent the words within the 
documents, and the cells are populated by the number of times each 
word appears in each document. 

2. Performing an “entropy weighting”, which is a two part 
transformation on the word-by-document matrix that gives a more 
accurate weighting of the word-type occurrences based on their 
inferred importance in the passages.   

3. Performing Singular value decomposition (SVD) on the transformed 
word-by-document matrix, with an output of the U, S, and V 
matrices.   

4. Calculating the cosine similarity between documents by multiplying 
S and the transpose of V and calculating the dot product between all 
pairs of resulting vectors, yielding a similarity matrix for the 
documents [62-64]. 

 

2 METHODOLOGY 
 

 This study serves (1) as a validation of the structuring of patents 
generated using LSA and the Kemp and Tenenbaum algorithm for 
discovering structural form and (2) as an examination of the effect of 
“near” and “far” external analogical stimuli on design output quality.  
The first part of the methodology section describes the steps taken to 
generate the structure of patents, while the second part details the set 
up and process by which the cognitive engineering design study was 
performed. 
 

2.1 Generating Structures 
2.1.1 Choosing Initial Patent Set   
 A random number generator was used to create a list of random 
patent numbers, from which a subset of 45 patents was chosen that 
were classified within the U.S. Patent classification system as “Body 
Treatment And Care, Heating And Cooling, Material Handling And 
Treatment, Mechanical Manufacturing, Mechanical Power, Static, and 
Related Arts”.  The full text of these 45 random “mechanical” patents 
were used in the next steps in Section 2.1 to generate the structure used 
to choose the analogical stimuli for the cognitive experiment.   
2.1.2 LSA Preprocessing  
 In order to extract the relationships between the patents in the set, 
the contextual similarity of the patents was evaluated through the use 
of LSA.  This contextual similarity took the form of a symmetric 
similarity matrix populated by pairwise cosine similarity values 
describing the level of semantic similarity between any two patent 
documents.  The full text, including the abstract and description of 
each of the 45 patents was run through a part-of-speech tagger, in 
which the verbs, adverbs, adjectives, and nouns are tagged separately, 
including repeated words.  In this application, the part-of-speech 
tagger served to remove any non-words from the documents.  LSA as 
described in Section 1.4 was then run on the set of 45 full text part-of-
speech tagged patents.  The resulting cosine similarity matrix served as 
the input data to the algorithm for discovering structural form.  It is 
important to recognize that this data is not unlike the similarity data 
used in Kemp and Tenenbaum’s work [44].  This LSA pre-processing 
step does not change the functionality of the algorithm devised by 
Kemp and Tenenbaum, though it does serve as a novel way of 
generating similarity for input to the algorithm. 
2.1.3 Structural Form Discovery   
 Kemp and Tenenbaum’s algorithm for discovering structural 
form as it was applied to the output data described in Section 2.1.2 
involves the following steps [44, 65]: 
1. The similarity data D was preprocessed by shifting the mean of the 

matrix to zero.  The normalized covariance matrix for D was 
calculated, defined as (1/m)DDT, where m is the number of features, 
or non-redundant non-trivial words included in the entire set of 
patents.  Shifting the mean of D to zero normalizes the feature 
matrix to allow the calculated covariance to be comparable to the 
“empirical covariance.”  

2. The form F and the structure S of that form that best capture the 
relationships between the set of 45 patents was found by 
maximizing the posterior probability – the probability that the data 
has structure S and form F given data D; i.e., search for the structure 
S and form F that jointly maximize the scoring function P(S, F|D).  
For example, the particular set of 45 patents in this study might be 
best described by the structural form of a grid, or perhaps as a 
hierarchy or other structure.  

3. A separate greedy search was run for each of the eight candidate 
forms, in order to identify the structure and form that maximize the 
posterior probability: 
• All 45 patents were assigned to a single cluster. 
• The algorithm split a cluster at each iteration, using a graph 

grammar that builds the structure (i.e., grid) after each split. 
• The algorithm attempted to improve the score (the posterior 

probability) using several proposals, including proposals that 
move an entity from one cluster to another and proposals that 
swap two clusters.  

• The search concluded when the score could no longer be 
improved. 

(1) 
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 The eight forms explored with the algorithm were the partition, 
chain, order, ring, tree, hierarchy, grid, and cylinder.  More detail on 
these forms and their generative grammars can be found in the source 
literature of Kemp and Tenenbaum [44, 65].  These forms were used 
as candidate forms.  The output of this step of the methodology is the 
best structure (instantiation) of each candidate form, and the associated 
posterior probability.   The best structure of the set of eight can be 
judged by which has the highest posterior probability value.  
 
2.2 Choosing Varying Stimulus Set 
 The main thrusts of the experiment were to (1) validate the use of 
structuring patents as an automatic analogical inspiration generator, 
and (2) explore, using the structure of patents, how analogical stimuli 
of different levels of distance from the design problem would affect 
the design output quality.  In order to achieve these two goals, the 
winning structure generated in the previous step was a hierarchy, and 
was used to choose 5 patents that were “near” and 5 patents that were 
“far” from the design problem description in the structure.  The 
location of the design problem description, or perhaps “starting point”, 
was determined by calculating its semantic similarity to each cluster in 
the structure and choosing the node with the highest similarity.  Near 
patents were chosen from nodes 0 to 1 node away from the design 
problem description location.  Far patents were chosen from nodes 3 
away from the design problem description.  The five near and five far 
patents served as the varying stimulus set for the cognitive engineering 
design study described in Section 2.3.  The structure is presented as 
Figure 4 in the Results Section. 
 
2.3 Experimental Procedure 
2.3.1 Participants  
 This study was performed at the University of Texas at Austin, 
USA with students enrolled at the university.  There were 72 
participants total, two of which were not included in the analysis and 
results due to lack of complete participation.  There were 10 graduate 
level participants, and 62 undergraduate level participants.  Seventeen 
participants were female, 52 participants were male, and 3 participants 
did not indicate their gender.  All participants had adequate domain 
knowledge of engineering and all but 2 had at least some design 
experience, consisting of some combination of course-related design 
projects, industry experience, and structured design courses and 
training in design tools. Detailed in the next step, there were 24 
participants in the “Near” condition, 24 participants in the “Far” 
condition, and 24 participants in the Control condition. 
2.3.2 Conditions  
 The independent variable was the patent distance in structure 
measured from design problem description position.  There were three 
conditions: 
1. “Near” Patents – These patents were zero or one node away from 

where the design problem laid in structure.  The varying stimulus set 
included 5 near patents, with each participant exposed to some 
combination of 3 of the 5. 

2. “Far” Patents – These patents were three nodes away from where 
the design problem laid in structure.  The varying stimulus set 
included 5 near patents, with each participant exposed to some 
combination of 3 of the 5. 

3. Control – This condition of participants received no external 
stimulus during the experiment. 

2.3.3 Design Problem  
 The design problem given to the participants to test the effect of 
the external analogical stimuli on the design quality output was to 
design a low cost, easy to manufacture, and portable device to collect 

energy from human motion for use in developing and impoverished 
rural communities, e.g., India, many African countries.  The design 
problem description as supplied to the participants is as follows: 

Design a device to collect energy from human motion 
for use in developing and impoverished rural communities in 
places like India and many African countries. Our goal is to 
build a low-cost, easy to manufacture device targeted at 
individuals and small households to provide energy to be 
stored in a rechargeable battery with approximately 80% 
efficiency.  The energy is intended to be used by small, low 
power draw electrical devices, such as a radio or lighting 
device, hopefully leading to an increase in the quality of life 
of the communities by increasing productivity, connection to 
the outside world, etc.  The target energy production is 1 
kW-hour per day, roughly enough to power eight 25 Watt 
compact florescent light bulbs for 5 hours each per day, or 
enough to power a CB radio for the entire day.  

For reference, an average adult human can output 
about 200 watts with full body physical activity for short 
periods of time, with a significant reduction for sustained 
power output.  

 This design problem has been used in previous work to examine 
design by analogy [66].  As in the previous work, the problem was 
chosen to be challenging and meaningful to the participants.  The lack 
of known or successfully implemented solutions make this design 
problem appropriately challenging, yet it is sufficiently simple such 
that meaningful design ideation could begin immediately.  The 
problem is judged as meaningful due to its social impact and relevancy 
to current efforts in the engineering and product design fields, 
encouraging an appropriate level of engagement from the students 
during ideation [67-69].  
2.3.4 Materials 
 Each participant received an envelope at the outset of the study, 
which included: 
• Consent form 
• Design problem description 
• Three patents, one to a page, including the abstract and one key 

diagram from each (these were not included in Control condition 
envelopes) 

• One stapled packet including: 
o Instructions for Phases A, B, and C 
o Ideation box sheets for Phases A and C 
o Post-experiment survey  
o Demographics survey  

2.3.5 Cognitive Study Procedure   
 The study was run in three separate sections, one 10-student 
graduate class, and two undergraduate classes with 39 and 23 students.  
There were three phases in the study.  Phase A was a pre-stimuli 
ideation phase, in which participants in all conditions worked for 10 
minutes on the design problem described in Section 2.3.3. In Phase B, 
participants in the “Near” and “Far” conditions had 5 minutes to read 
and understand three patents from their respective varying stimulus 
sets.  The Control condition participants continued to ideate during 
Phase B.  In Phase C, all participants returned to ideating on the given 
design problem.   
 Envelopes containing the materials listed in Section 2.3.4 were 
distributed in a random manner by condition and geographic location 
in the room for all three sections of the study. Participants signed 
consent forms, and were told the overall timeline of the study.  They 
then completed the three phases described above, and were given one 
minute warnings before each phase was over. The experimenter 
announced that Phase C had concluded after 15 minutes had elapsed.  
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The participants were then asked to complete the debriefing survey 
and the demographics survey.  After they completed the two surveys, 
they were asked to place all materials back into the envelope in which 
they came and return the envelope to the experimenter. 
 

3 DESIGN METRICS 
 
The design output from the participant was expressed on paper 

provided to the participants.  The paper had two boxes per page, in 
which participants were instructed to include one idea per box. Each 
idea included either textual description of the concept, a sketch of the 
concept, or the majority of the time, both a textual description and 
sketch. To fully understand the effects of the inspirational stimuli on 
the participants’ ideation, participant-generated ideas were coded for a 
range of design metrics. The following section details the metrics used 
to understand the design output and performance of the participants.   

 
3.1 Design Evaluation Metrics 
 To explore the effect of the external inspirational stimuli of 
different analogical distances on design quality output of individuals, 
several design evaluation metrics were used.  For consistency and 
comparability, these metrics are the same as those used in our previous 
work with design by analogy with minor modifications noted below 
[66].  The metrics used were: (1) quantity of ideas, (2) breadth of 
search through the design solution space, (3) novelty of ideas, and (4) 
quality of ideas. Quantity and breadth were used to examine how the 
participants were ideating; quantity of ideas was meant to give a sense 
of whether participants were generating and/or refining a small 
number of ideas or exploring larger numbers of concepts and 
variations on these concepts, the latter of which is correlated with a 
greater likelihood of higher quality ideas [64]; breadth of search was 
intended to gauge participants’ ability to come up with a wide variety 
of ideas, a skill found to correlate with the ability to restructure 
problems – arguably a vital skill in design problem solving [70-72].  
The novelty and quality metrics focused on the design output of the 
participants. Quality of design output was measured because it is most 
important that design solutions meet customer requirements.  A design 
might be novel, but if it does not meet customer needs or 
specifications, it is not an acceptable solution to the problem [70]. 
Novelty was examined due to the general consensus in the literature 
that creative products are at least novel [70, 71].  
 
3.2 Quantity 
 Quantity of ideation was defined as the number of solution 
concepts generated after receiving examples, i.e., from the Phase C of 
the experiment, that met the minimum constraints of the design 
problem, namely (1) the device generates electricity, and (2) it uses 
human motion as the primary input. To account for effects of 
individual differences in quantity of ideation and focus on the effects 
of examples, analyses adjusted for the number of solution concepts 
generated in the first phase, which acted as a covariate to adjust for 
baseline variation in quantity across participants. 
 
3.3 Breadth 

Breadth was conceptualized as the proportion of the space of 
possible solutions searched by a given participant. The space was 
defined by using functional decomposition to create a set of possible 
subfunctions of solutions to the design problem, based on the 
methodology and consistent with those used in our previous design by 
analogy study [66] informed by the function and flow basis of Hirtz et 

al. [32]. The original set of subfunctions was the same as that used in 
the previous study [66].  The subfunctions were divided into two parts 
– how and what; how signifies the component that implements the 
subfunction, and what signifies either the input or output flow of the 
subfunction, whichever is less specified.  For example, for the 
subfunction “import human”, the how might be “crank” and the flow 
might be “hand.”  The initial set of solutions, or possible instantiations 
of each subfunction, was re-used from the previous design by analogy 
work [66], and a few were added if they were not already in the pre-
existing solution space.  A doctoral candidate in mechanical 
engineering coded the solutions to the subfunctions for each idea, and 
a second mechanical engineering doctoral candidate independently 
coded 25% of the data for inter-rater agreement.  Agreement was 
assessed at two levels: the first level assessed the degree to which the 
two coders agreed whether or not an idea provided a solution to a 
given sub-function; the second level assessed the agreement between 
coders on the type of solution to the sub-function, given that they had 
agreed a solution was provided. Agreement on the first level was 
excellent (Cohen’s κ = .94), and agreement on the second level was 
acceptable (κ = .74 averaged across sub-functions).  
 As in the previous work, only a small subset of the subfunctions 
that were coded were common enough for calculated estimates of 
breadth, novelty, and diversity to be stable (i.e., base rate greater than 
0.1, collapsed across conditions): 
1. Import human energy (how) 
 Import/accept (what) human interaction 
2. Transform human energy to mechanical energy (how) 
 Transform human energy to (what) mechanical energy 
3. Import other energy source (how) 
 Import (what) other energy source 
4. Transform other energy source to mechanical energy (how) 

Transform other energy source to (what) mech. energy 
5. Transform mechanical energy to electrical energy (how) 

Transform (what) mechanical energy to electrical energy 
 Similar to the previous work, there were only two solution types 
in the subfunction of “store electrical energy,” (battery and capacitor), 
and the frequency of occurrence of these two solutions were nearly 
equal, and therefore would not have significant impact on 
differentiating between participants in terms of breadth or novelty 
calculations. 
 We defined the space of possible solutions for each of the what 
and how components of each sub-function by enumerating the number 
of distinct solution types generated by participants across the final 
phase of ideation. A breadth score bj for each participant on sub-
function j was given by:     

                                (2) 
where Cjk is the total number of solution types generated by the 
participant for level k of sub-function j, Tjk is the total number of 
solution types produced by all participants for level k of sub-function j, 
and wk is the weight assigned level k. To give priority to breadth of 
search in the what space (types of energy/material manipulated), we 
gave a weight of 0.66 to the what level (which was assigned to k = 1), 
and a weight of 0.33 to the how level (which was assigned to k = 2). 
An overall breadth score for each participant was given by the average 
of breadth scores for each of the three sub-functions j. 
 
3.4 Novelty 
 Each idea’s novelty score was given by: 

bj = wjk ×
Cjk

Τ jkk=1

n

∑
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!
!
×

!!×!!

!!  
where 𝑅 is the rarity score for the idea’s solution for the jth 
component of the ith subfunction. The overall rarity score for the ith 
sub-function is given by the weighted average of the rarity scores for 
the j components of the subfunction, with 𝑤!  as the weight for each 
component. All j weights summed to 1. The unweighted average of 
rarity scores for all i subfunctions constituted the aggregate novelty 
score for each idea. 
 𝑅 for each solution was computed using a formula adapted from 
[72]:  

!!!
!

 
where 𝑇 is the total number of solution tokens for a given 
component of a given subfunction in a baseline solution space, and 𝐶 
is the number of solutions tokens of the same type as the current 
solution. This baseline space included only solution types from a 
universe of 583 ideas generated by participants who either had or had 
not received patent examples, including ideas from participants in a 
previous ideation study using the same design problem [66]. Solution 
types that did not occur in this space were automatically set to 𝑅 = 1. 
This metric design allowed for example-inspired novel solutions 
shared by participants who saw the same example to still be counted as 
novel, assuming that these solution types were unlikely to be generated 
in the absence of the example, and therefore unlikely to be represented 
in the baseline solution space. 
 Recall that each idea was coded for functionality in terms of its 
how and what for a set of given subfunctions. For purposes of 
computing 𝑅, each subfunction had three components: a description of 
(1) the type of flow, or the what (e.g., energy, human body part) being 
acted upon, (2) the type of instantiated device function, or the how 
(e.g., pedals, piezoelectric plate) acting upon the flow, and (3) a 
description combining the function (how) and flow (what) into a 
compound function statement. For example, one common idea was 
transforming human pedaling action into rotational energy, which is 
then transformed into electrical energy via a dynamo-type generator. 
For the subfunction “import human energy/interaction”, the what for 
this solution would be “foot”, the how would be “pedals”, and the 
compound statement would be “foot with pedals”. 
 The flow (what), function (how), and compound components for 
each subfunction were given weights of 0.5, 0.3, and 0.2, respectively. 
These weights were chosen to reflect the order of "difficulty" in 
achieving rarity. The variety of flows (whats) tends to be more limited 
(e.g., most ideas transform human energy into rotational mechanical 
energy); thus, rarity should count for more in this space. However, in 
the compound space, the likelihood of finding two ideas with the exact 
same combination of flow (what) and function (how) is much lower, 
thereby lowering the threshold for rarity; thus, rarity should count for 
less in this space. 
 
3.5 Quality 
 The quality of solution concepts was determined by first selecting 
the best concept from each phase for each participant across all phases. 
This coding was done by a doctoral candidate in mechanical 
engineering. Twenty-five percent of the data was independently coded 
by a second doctoral candidate in mechanical engineering for inter-
rater reliability, which was found to be at an acceptable level of 74% 
agreement. These “best” concepts were then evaluated using a detailed 
quality analysis, similar to that which was used in our previous design 
by analogy work [66].  This analysis involved measuring quality on a 
set of subdimensions, in a Pugh chart type of format.  The 

subdimensions, corresponding to a set of projected customer 
requirements, were as follows: 
1. Cost 
2. Feasibility of materials/cost/manufacturing 
3. Feasibility of energy input/output ratio 
4. Number of people required to operate device at a given moment 
5. Estimated energy output 
6. Portability 
7. Time to set up and build, assuming all parts already available at 

hand 
 The subdimensions were generated by the first author, a doctoral 
candidate in mechanical engineering with a research focus in design 
methods, and were checked for validity by two other authors who are 
mechanical engineering faculty in the field of engineering design.  The 
solution concepts were scored on each of the subdimensions on a 5-
point scale ranging from 0 to 4, where 0 is unacceptable and 4 is 
excellent.  The judgment of the score for a concept in each 
subdimension was explicitly described prior to rating the designs. 
Inter-rater reliability for the first and last sub-dimensions (cost and 
time to set up and build) was unacceptable (r < .2), so these 
dimensions were dropped. Reliability averaged across the remaining 
sub-dimensions was acceptable at r = .52. 
 The overall quality score for each solution for the detailed quality 
analysis was computed using the following formula: 

 

where qj is the quality score for quality subdimension j,  rj is the 
reliability of the coding for that subdimension, and Qmax is the 
maximum possible overall quality score, which would be given by 
setting qj to 4 for each subdimension. The subdimensions were 
weighted by reliability as judged by the raters to minimize the 
influence of measurement error. The overall quality score for the 
detailed analysis was a proportion of the maximum possible quality 
score, yielding values between 0 and 1. 
 

4 RESULTS 
 

 Separate analyses of variance were performed for each of the 
metrics described in the previous section. Bonferroni corrections were 
applied to all post-hoc contrasts to correct for Type I error inflation 
(false alarms) due to multiple comparisons.  No significant effects 
were seen across conditions in quantity (F(2, 67) = 0.05, p = 0.94) or 
breadth of ideas (F(2, 61) = 0.47, p = 0.62.    
 In novelty for the current study, we examined both mean novelty 
and maximum novelty.  The independent variable of distance of 
analogical stimuli had a significant effect on maximum novelty of 
ideas, (F(2,59) = 4.139, p = 0.02).  Post-hoc pairwise comparisons 
showed that the most novel concepts generated by participants in the 
far condition were, on average, significantly less novel compared to 
concepts generated by participants in either the near (Cohen’s d = -
0.82, p =0 .02) or control conditions (d = -0.91, p = 0.008; see Figure 
1, right). There was no significant effect on mean novelty (F (2, 61) = 
1.626, p = 0.20), but the mean trends were similar to those in 
maximum novelty, where the far condition achieved less novelty than 
the near and control conditions.  These results are contradictory to 
those found in our previous work, which stated that “far” analogical 
stimuli are correlated with higher maximum novelty.  This discrepancy 
will be discussed in detail in the Discussion Section.  Novelty results 
from the previous study and the current study are depicted in on the 
left in Figure 1. 

Q =

qj × rj
j=1

n

∑

Qmax

(3) 

(5) 

(4) 
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 A significant effect of distance of analogical stimuli on mean 
quality was found (F (2, 65) = 4.07, p = 0.02).  In post-hoc pairwise 
contrasts, it was found that the near condition had significantly higher 
quality design output than the far condition (d = 0.76, p = 0.02), and 
was trending (though not significantly) toward higher quality design 
output than the control condition (d = 0.54, p = 0.23).  
 In addition, in the current study, a significant effect of distance of 
analogical stimuli on maximum quality was found (F (2, 65) = 4.13, p 
= 0.02; see Figure 2 right).  Post-hoc contrasts showed that the 
highest quality concepts generated by participants in the far condition 
were, on average, of significantly lower quality compared to concepts 
generated in the near condition (d = -0.76, p = 0.02), and trending 
(though not significantly) towards worse quality than the control 
condition (d = -0.72, p = 0.11).  As with novelty, these results are 
contrary to those found in our previous work, which states that far 
analogical stimuli have a positive, albeit indirect, effect on quality: the 

far stimuli resulted in higher variability in quality of ideas [68], which 
was positively associated with maximum quality (in accord with other 
findings in the literature [66, 73]).  Variability of quality was not 
calculated in the current study because we only coded the best 
concepts from each participant.  The discrepancy between the quality 
results in the current study and the previous study will be discussed in 
depth in the next section.   
 One final result concerned the debriefing survey administered to 
the participants after the ideation phases of the experiment: 
participants rated the far analogical stimuli as significantly less 
relevant to the design problem than the near analogical stimuli (F (1, 
44) = 4.72, p = 0.035, d = -0.64; see Figure 3).  This was a composite 
measure, calculated by averaging ratings across two Likert scale 
questions from the survey: “This device is similar to devices that 
generate energy from human motion”, and “The mechanisms in this 
device are relevant to designing devices that generate energy from 
human motion.”  
 The results found in the study presented here are compared with 
the results found in a previous recent study by the authors [66], which 
examined the effect of analogical distance, commonness, and modality 
of external analogical stimuli on ideation performance.  In that study, 
the experimental procedure, design problem, and metrics used to 
measure ideation performance were nearly identical to those used in 
the current study.  The only discrepancies were that feature transfer 
and variability in design metrics were not coded for the current study 

due to a lower total number of ideas generated. The “near” stimuli 
were defined as “within domain” technologies, being patents 
describing energy generation technologies that could be used for 
analogical transfer to the human motion energy generation design 
problem. The “far” stimuli were defined as “cross domain 
technologies, or rather patents that described technologies that were 
not pertaining to energy/electricity generation, but could still 
potentially be used for analogical transfer to the design problem.  
These patents were chosen by mechanical engineering design faculty 
and a mechanical engineering design PhD candidate.  This previous 
work indicated that far-field analogical stimuli were correlated with 
significantly better ideation performance over the near-field analogies 
in terms of novelty and quality. An exploration of the reconciliation of 
this previous study and the current study stimulates interesting, 
validating, and thought provoking discussion. 

5 DISCUSSION 
 

 As indicated by the results presented in Section 4, it is 
encouraging to recognize that, in the current study, participants 
exposed to “near” patents were not significantly worse than the control 
condition participants in terms of novelty and quality of their design 
output – meaning that the external stimuli, though causing a greater 
cognitive load on the participants, was not detrimental to their 
performance on the design task.  Further, the results in Section 4 
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indicate that the patents designated as “near” patents in this study were 
significantly more helpful to designers during their ideation than the 
patents designated as “far” in terms of their effect on novelty and 
quality of design output, and in their perceived relevance to the design 
problem.   
 Figures 1 and 2, displaying the novelty and quality results from 
the previous and current studies, suggest what appear to be opposing 
conclusions regarding whether “near” or “far” patents are more 
beneficial to the design output.  These seemingly opposing results 
raised the question: how consistently are the labels “near” and “far” 
used, not only in these two studies, but in the literature as a whole? 
Unfortunately, “near” and “far” when talking about the distance of 
analogies often mean something different to each researcher, and to 
each individual study or discussion.  This makes generalization about 
the effects of distance of analogy on design and ideation a difficult 
task.  To reconcile the findings of our two studies, we took advantage 
of the same process and tool used to choose the stimuli in the most 
recent work in this paper to understand how our definitions of “near” 
and “far” compared to one another.   
 Figure 4 displays the hierarchy structure created and used to 
choose the near and far patents for this study.  All patent index 
numbers and corresponding U.S. patent database numbers can be 
found in Appendix A.  The text of the design problem was used within 
LSA to find the effective “starting point” within the structure, chosen 
by calculating which node was most semantically similar to the design 
problem text.  As stated in the Methodology Section, the near patents 
were chosen from the set of 45 if they were zero or one node away 
from the starting point.  The far patents were chosen to be 3 nodes 
away from the starting point.  
 The 8 patents, 4 “near” and 4 “far” from the previous study were 
added to the structure of 45 random patents used to choose stimuli for 
this study.  The resulting hierarchy structure is shown in Figure 5.  
Patents numbered 46-49 were “far” patents and those numbered 50-53 
were “near” patents from the previous study.  
 It is interesting to find that all 8 patents from the previous study 

clustered closely, within zero or one node, around the design problem 
“starting point”, with the “near” patents from the previous study being 
an average of 0 nodes away from the starting point and the “far” 
patents from the previous study being an average of 0.5 nodes away 
from the starting point; the patents designated as “near” in the current 
study were placed one or two nodes away from the starting point, an 
average of 1.4 nodes away (and thus farther away than the near patents 
from the first study); and the patents designated as “far” in this work 
were now placed, in all but one case, three or four nodes away from 
the starting point, with an average of 2.8 nodes away.  This structure 
quantifies the relative distance of the external analogical stimuli to the 
design problem starting point, for two different studies.  The hand-
picked near patents from the previous study are the closest set of 
patents to the design problem in the structure.  The hand picked far 
patents from the previous study are still closer than the near patents 
chosen by the algorithm from the current study.  This relative distance 
relationship makes sense in that the likelihood of having truly useful 
patents from only a random selection of 45 is small.  As the better 
analogies are added to the mix, the set of randomly selected patents 
spreads out from the design problem.  The relative distances in number 
of nodes in each distinct structure should be viewed not as an absolute 
measure but as a means for qualitative comparison – as the space and 
meaning of distance in the structures will change as the particular 
patents and number of patents within them change. 
 These results support our argument that near and far can have 
distinctly different meanings across the literature.  In addition, it is a 
validation of the structuring methodology and its ability to portray 
relative analogical distance. This analysis method can be taken one 
step further, by adding yet another 100 random patents to the space to 
see how the relationships might change in an even larger context pool, 
better mimicking how these patents might be situated in the entire 
patent database.  The resulting structure is shown in Figure 6. 

The hierarchy structure in Figure 6 shows similarities to that in 
Figure 5, but with some interesting differences.  The 8 patents from the 
previous work remain closely clustered around the design problem 
starting point, with the “near” patents being an average of 0.5 nodes 
away and the “far” patents being an average of 1.5 nodes away.  

FIGURE 4: ORIGINAL STRUCTURE OF 45 
RANDOM PATENTS USED TO CHOOSE 
STIMULI SETS IN THE CURRENT STUDY 
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However, the patents from the study presented in this paper are 
scattered in the structure in a more unexpected way. The “near” 
patents are now an average of 4.4 nodes away from the design problem 

starting point, and the “far” patents are further out at an average of 6 
nodes away; but in many cases, the patents from this work called 
“near” are found in the same cluster as those called “far”, or are found 
the same distance away from the starting point.  In a few cases, “far” 
patents are even found closer to the starting point than “near” patents.  
 It is hypothesized that the larger the structures become, the more 
well-tuned the structure will be, much the same to the logic behind 
using large sample sizes.  As the number of patents that are included in 
the representative space and subsequent structure increases, the 
clustering, connections, and associations represented within the 
structure will become more meaningful, as there are more likely to be 
useful patents for analogical stimulation.  With this hypothesis in 
mind, we focus discussion on the structure in Figure 6.  The results in 
the previous study imply that “far” patents as analogical stimuli are 
more beneficial than “near” patents to design output quality.  The 
structure in Figure 6 shows that the “near” patents from the previous 
study are closer to the design problem in semantic similarity than the 
“far” patents.  The results from the current study imply that “near” 
patents are more beneficial than “far” patents to design output quality.  
The “near” patents from the current study are closer to the design 
problem starting point than the “far” patents from the current study, 
but not as near as the “far” patents from the previous study.   
 These results taken all together suggest that there is a “sweet 
spot” for distance from the design problem when choosing analogical 
stimuli – in other words, there may be such a thing as “too near” and 
“too far” when searching for analogies to employ in design by analogy 
ideation practice.  The “near” patents from the previous study were too 
“near” to be beneficial to designers as analogical stimuli.  The “far” 
patents from the current study were too “far” to be useful to the 
designers, as well.  This conclusion is reinforced by the finding 
presented in Figure 3, showing that the participants found the “far” 
patents to be significantly less relevant to the design problem.  Our 
findings directly challenge the random inspiration methods that some 

suggest can be helpful to design inspiration [20], in that random 
analogical stimuli may be too distant from the design problem to allow 
for mapping or transfer to occur. The current study explored the 

impact of example solutions on novice designers, arguing for a sweet 
spot for analogical distance to the given design problem.  Based on 
previous work showing that experts do use analogies but can be 
fixated by those that include very near or close examples [74], we 
expect that a similar sweet spot exists, possibly with different 
parameters that should be explored in future work.  It is important to 
note that this suggested “sweet spot” is dependent upon and specific to 
the patents and design problem, and number of patents used in this 
study, and would change as these variables change.  The stabilization 
of this sweet spot is an area for future work.  
 The results presented here are impactful for a few reasons.  First, 
there is promise for the use of this structuring technique as the basis of 
a design inspiration tool for automatically finding design analogies.  
Designers often employ design-by-analogy through coming up with 
the analogies themselves, through a stroke of luck, low hanging fruit, 
or genius.  The current most widely used method for searching for 
analogical inspiration in the patent database is through key word 
search.  The results of key word searches can be an overwhelming 
undertaking to explore for design inspiration. There are also 
computational “innovation support tools” for sale to businesses and 
innovators [75]. All of these methods and tools place the onus largely 
on designers to generate the terms or analogies of their own accord and 
comb through search results.  It is known in the psychology literature 
that the retrieval of far-field analogies is cognitively difficult [23].  In 
addition, remindings tend to be constrained by surface similarity [24], 
meaning the probability of retrieving surface dissimilar analogies is 
low.  Thus, a computational design tool that could find analogies in the 
“sweet spot” that is indicated from the work presented here, which 
would not easily be located by a designer due to surface dissimilarity 
or rarity of occurrence, could be exceedingly helpful to facilitating the 
practical use of the design-by-analogy method.  With a large 
population of patents to build the structures, designers could have fast 
and relatively easy access to relevant analogies that could be useful or 

FIGURE 6: ORIGINAL STRUCTURE OF 45 RANDOM 
PATENTS WITH 8 PATENTS FROM PREVIOUS STUDY AND 
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inspirational to them, that they may not have otherwise thought of or 
been able to find. 
 Future work includes extending this methodology to create very 
large, descriptive structures of the patent database to use as a tool in 
cognitive studies to explore the design space in a methodical, 
quantified way. One particular avenue of extension would take 
advantage of the potential information contained in the structuring and 
clustering of the patents that goes beyond simply delineating potential 
relevance to the design problem. For example, the grouping of patents 
into nodes based on functional similarity could highlight features and 
functional principles that would otherwise potentially be overlooked 
(e.g., via analogical comparison; [76, 77]) yielding fresh insights for 
creative ideation. In the cognitive psychology literature, it has been 
shown that enabling changes in representation of objects and/or ideas, 
for example by leading problem solvers to attend to previously ignored 
features, is an effective way of dealing with "functional fixedness", 
where problem solvers have difficulty seeing a potential creative use 
of an object with which they are familiar [78, 79]. Labeling of nodes 
or entities in these structures could also facilitate multiple 
representations of potentially relevant functional principles for design-
by-analogy. 
 The broader goal of this work is to reach a robust cohesive theory 
of the ways in which analogical stimuli could be most optimally 
structured and prepared for exploration to support creative design 
ideation.  

6 CONCLUSIONS 
 

The cognitive engineering design experiment presented in this 
paper, combined with those of the previous study performed by the 
authors, suggest that the terms “near” and “far” when referring to 
distance of analogies are contextual and relative terms.  The nature of 
the use of these terms in the literature makes it difficult to formulate a 
cohesive theory of analogical distance and its effect on design output 
quality.  The analysis presented in this paper takes a step toward 
reconciling diverse findings.  The use of a structuring method 
combining Latent Semantic Analysis and a hierarchical Bayesian 
algorithm for choosing and analyzing the analogical stimuli in both 
studies suggests that there is a “sweet spot” for distance of analogies, 
and that there is such a thing as too “near” and too “far” in design 
analogies.  The structuring method presented shows promise as a 
facilitator for a unified methodology and eventual development of a 
cohesive and robust theory on the effect of distance of analogy on 
design output, as well as providing a basis for an automated design 
analogy finding tool for supporting creative design ideation. 
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APPENDIX 
PATENT INDEX 

Patent 
Index 

U.S. Patent 
Number 

1 5,626,594 
2 3,945,652 
3 6,264,019 
4 6,298,842 
5 5,343,936 
6 6,300,699 
7 4,400,154 
8 4,078,716 
9 5,234,096 

10 4,780,075 
11 5,988,780 
12 5,542,526 
13 5,107,608 
14 6,543,101 
15 6,398,066 
16 4,026,453 
17 6,685,268 
18 4,508,361 
19 5,085,240 
20 5,171,128 
21 6,551,037 
22 4,343,498 
23 5,165,473 
24 4,232,428 
25 3,963,052 
28 5,018,908 
29 5,277,276 
30 6,109,307 
31 6,666,211 

32 6,082,923 
33 6,453,834 
34 4,440,105 
35 4,389,922 
36 5,378,106 
37 4,950,250 
38 4,050,047 
39 5,452,860 
40 5,160,091 
41 5,377,379 
42 4,162,046 
43 4,380,216 
44 6,669,716 
45 3,977,562 
46 4,335,611 
47 4,402,483 
48 4,568,937 
49 4,139,981 
50 4,266,143 
51 4,247,785 
52 6,208,037 
55 4,506,651 
56 5,239,707 
57 4,535,756 
58 4,304,332 
59 6,612,806 
60 5,762,169 
61 6,716,115 
62 4,678,083 
63 4,813,672 
64 4,649,970 

65 6,481,735 
66 4,380,233 
67 6,991,656 
68 7,059,508 
69 4,488,547 
70 5,228,241 
71 4,379,706 
72 4,233,773 
73 5,416,955 
74 7,215,986 
75 4,705,065 
76 4,432,481 
77 4,203,505 
78 3,970,149 
79 5,590,608 
82 5,768,928 
83 6,044,919 
84 5,921,843 
85 4,483,066 
86 6,776,447 
87 4,913,681 
88 5,964,159 
89 6,505,991 
90 6,616,409 
91 6,769,593 
92 6,782,855 
93 4,251,075 
94 5,528,878 
95 5,819,391 
96 5,842,652 
97 4,407,173 

98 4,230,228 
99 5,305,697 

100 4,241,749 
101 4,876,854 
102 6,143,013 
103 6,186,701 
104 5,931,180 
105 7,083,469 
106 5,437,133 
109 5,265,643 
110 5,984,148 
111 5,375,948 
112 6,367,521 
113 6,497,607 
114 4,853,977 
115 5,993,410 
116 4,223,996 
117 4,589,668 
118 3,962,735 
119 4,124,051 
120 7,175,212 
121 4,984,583 
122 4,259,034 
123 6,634,325 
124 4,123,000 
125 5,909,815 
126 3,975,130 
127 4,103,708 
128 3,964,473 
129 4,705,064 
130 6,142,689 

131 5,273,173 
132 5,438,724 
133 6,974,456 
135 3,941,514 
136 6,109,282 
137 4,303,397 
138 5,899,571 
139 6,234,452 
140 4,841,621 
141 4,142,679 
142 6,634,044 
143 4,270,310 
144 5,423,097 
145 5,572,898 
146 3,938,909 
147 5,647,066 
148 6,119,041 
149 4,484,762 
150 4,762,262 
151 6,164,698 
152 6,062,856 
153 4,739,727 

 




