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Multiple coordinated visualizations enable users to rapidly explore complex information.
However, users often need unforeseen combinations of coordinated visualizations. Snap-
together visualization (Snap) enables users to rapidly and dynamically construct coor-
dinated}visualization interfaces, customized for their data, without programming. Users
load data into desired visualizations, then construct coordinations between them for
brushing and linking, overview and detail view, drill down, etc. Snap formalizes a concep-
tual model of visualization coordination based on the relational data model. Visualization
developers can easily Snap-enable their independent visualizations using a simple API.

Empirical evaluation reveals bene"ts, cognitive issues and usability concerns with
coordination concepts and Snap. Two user studies explore coordination construction
and operation. Data-savvy users successfully, enthusiastically and rapidly constructed
powerful coordinated}visualization interfaces of their own. Operating an overview-and-
detail coordination reliably improved user performance by 30}80% over detail-only and
uncoordinated interfaces for most tasks.

( 2000 Academic Press
1. Introduction

In the "eld of information visualization, researchers and developers have created many
types of visualizations or visual depictions of information (Card, Mackinlay & Shneider-
man, 1999). For example, to display hierarchical information, one can choose from
outliners, hyperbolic trees (Lamping & Rao, 1996), treemaps (Shneiderman, 1992),
"sh-eye views (Furnas, 1986), etc. Each visualization has di!erent strengths. For example,
hyperbolic trees may be appropriate for deep unbalanced hierarchies, whereas treemaps
are helpful when nodes have numerical attributes.

User-interface designers often coordinate multiple visualizations, taking advantage of
the strengths of each, to create even more powerful information exploration environ-
ments (Shneiderman, 1998; Baldonado, Woodru!& Kuchinsky, 2000). This technique is
particularly potent when the information is su$ciently complex to require di!erent types
of visualizations for di!erent aspects or layers. A simple example interface is Microsoft's
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716 C. NORTH AND B. SHNEIDERMAN
Windows Explorer, which employs three visualizations to browse hierarchical "le
systems: an outliner visualization of the folders, a tabular visualization of the "les in the
selected folder and a textual visualization of the details of the selected "le including
a miniature quick-view.

We de"ne a coordinated}visualization user interface as a set of visualizations and a set
of coordinations between them. Some common types of coordinations (North
& Shneiderman, 1997) used in information}exploration interfaces are as follows.

f Brushing and linking: an exploratory data analysis (EDA) technique used when dis-
playing a set of data items in multiple visualizations. When users select items in one
visualization, those items are automatically highlighted in all the visualizations.
A common example is brushing scatterplots (Becker & Cleveland, 1987).

f Overview and detail view: selecting an item in the overview navigates the detail view to
the corresponding details. Items are represented visually smaller in the overview. This
provides context and allows direct access to details. For example, web designers often
add a table-of-contents frame to a large document. Users can then select a section title
to scroll the main frame immediately to that section.

f Drill down: allows users to navigate down successive layers of a hierarchical database.
Selecting a parent item in one visualization loads children items into another visualiz-
ation, as in Windows Explorer. This enables exploring very large-scale data, by
displaying aggregates in one visualization and the contents of a selected aggregate in
another visualization (Fredrikson, North, Plaisant & Shneiderman, 1999).

f Synchronized scrolling: users can conveniently scroll through multiple corresponding
data sets. Examples are alternate translations, music and information with summaries
or annotations.

In the literature, the phrase &&multiple views'' is sometimes used to refer to only the
brushing-and-linking coordination. Hence, we use &&coordinated visualizations'' to refer
to the more general de"nition above.

While many coordinated}visualization interfaces have been implemented, two con-
founding problems arise. Firstly, the set of visualizations and coordinations needed in
any given situation depends greatly on the following.

f Data: di!erent data sets have di!erent features and structure.
f ¹asks: what does the user want to accomplish with the data?
f ;sers: there is tremendous variation between users in individual user preferences,

experience levels, etc.

For example, while Windows Explorer is helpful for some users and tasks, system
administrators may need di!erent visualizations. Replacing the outliner visualization of
folders with a scatterplot of the folders would enable administrators to quickly spot large
old folders for archival (see Figure 1).

Secondly, the implemented visualization tools are typically not programmed to
coordinate together. Hence, these alternate combinations usually require custom devel-
opment. Researchers in our lab stumble over this problem often, and must constantly
re-implement coordinations between new unforeseen combinations of visualizations.
Unfortunately, this is a poor solution to the problem. Even with good component-based
design, these hard-coded combinations are in#exible and di$cult to construct.
IJHCS=20000418=Ravi=VVC



FIGURE 1. A coordinated}visualization interface, quickly constructed with Snap, for system administrators
browsing "le}folder structures. The scatterplot and hyperbolic tree display the folders, enabling users to
examine size and date trends as well as hierarchical structure. Selecting a folder displays details of its "les in the

tabular visualization. Selecting a "le displays it in the quickview.
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Clearly, the number of needed combinations of visualizations and coordinations
explodes exponentially, and implementation becomes intractable. Hence, the control of
the choice of coordinated}visualization interface needs to be in the hands of the users.
A lightweight mechanism is needed to allow end-users to easily &&snap'' individual
visualizations together into custom combinations. This must not be a toolkit that
requires programming, but a user interface.

Snap-together visualization (Snap) is a conceptual model, user interface, software
architecture and implemented system developed to meet these needs. Snap enables data
users to rapidly and dynamically mix and match visualizations and coordinations to
construct custom exploration interfaces without programming. Snap is #exible in data,
visualizations and coordinations. Snap focuses on (1) interconnecting the visualization
tools created by researchers and developers in the "eld to (2) construct coordinated}vis-
ualization interfaces for rapid exploration and navigation of data and relationships.

Snap also provides a platform on which to study the use of coordinated visualizations
in general. Do users understand coordination between visualizations? Can they con-
struct their own coordinated}visualization user interfaces to support their tasks? Can
they use coordination to their bene"t? If there is a bene"t, why and what are the key
aspects of the coordinated visualizations that causes improvement?
IJHCS=20000418=Ravi=VVC



718 C. NORTH AND B. SHNEIDERMAN
In general, user-interface design requires signi"cant expertise, but Snap puts some
design capability in the hands of users. Can users essentially design their own user
interfaces for information exploration by snapping together appropriate components?

This paper presents the Snap user interface and basic conceptual model and then
reports on two studies on constructing and operating coordinated visualizations.

2. Related work

Coordinated}visualization systems for information visualization can be classi"ed by
their level of #exibility in data, visualizations and coordinations.

(1) Data: users can load their own di!erent data sets into the visualizations.
(2) <isualizations: users can choose di!erent sets of visualizations as appropriate for the

data.
(3) Coordinations: users can choose di!erent types of coordinations between pairs of

visualizations as needed for exploring or navigating relationships in the data.

Level 0 systems are not intended for #exibility. For example, Windows Explorer
always displays the same data set (the hard-drive "le structure), with the same visualiz-
ations and coordinations.

Most systems are level 1, #exible for data but not visualizations or coordinations.
Users can load their own data, but are always presented with the same interface.

Level 2 systems include #exibility in choice of visualizations. EDA systems, such as
Datadesk (Velleman, 1988), SAS JMP, EDV (Eick & Wills, 1995), and Spot"re (Ahlberg
& Wistrand, 1995), display a data table in many di!erent types of visualizations of users'
choosing such as scatter plots or bar charts. All the visualizations are coordinated for
brushing-and-linking, allowing users to relate data points across visualizations. In
databases, Visage (Roth et al., 1996) extends the brushing coordination to multiple tables
by brushing across relational joins. However, users cannot establish a di!erent type of
coordination between two visualizations with these systems.

Level 3 systems include #exibility in the coordinations between visualizations. Some of
these provide only one type of coordination but let users choose which visualizations to
coordinate. The Apple Dylan programming environment (Duman & Parsons, 1995) lets
users browse hierarchical object-oriented programs by splitting and linking frames so
that selecting a folder in one frame displays its contents in the other frame (e.g.
generalized Windows Explorer). Spreadsheet visualization (Chi, Barry, Riedl & Konstan,
1997) arranges many small 3D visualizations as cells in a 2D grid. Then, users can select
a whole row or column of visualizations to synchronize their 3D navigation. DEVise
(Livny et al., 1997) allows users to select some di!erent types of coordinations between
visualizations. Users can synchronize panning and zooming of plots with common axes,
and establish set operations between visualizations so that data in one visualization can
be combined with data in another.

In scienti"c visualization, data-#ow systems such as ConMan (Haeberli, 1988), AVS
and IBM Data Explorer, and "lter-#ow systems such as Linkwinds (Jakobson, Berkin
& Orton, 1994) also employ a form of dynamic linking, but for a di!erent purpose. Users
link a variety of modules to create custom data processing and viewing pipelines, much
like pipes on the Unix command line. Snap coordinations transmit interaction rather
IJHCS=20000418=Ravi=VVC



SNAP-TOGETHER VISUALIZATION 719
than data, and coordinations are bi-directional like constraints rather than pipes.
Constraint-based tools such as ThingLab (Borning, 1986) are intended for speci"cation
of more complex interaction within a view.

Snap builds on these systems, borrowing Visage's information-centric approach mak-
ing individual information objects the basis of coordination rather than 2D informa-
tion-space axes as in DEVise. Snap uses a drag-and-drop action similar to Apple Dylan
to select visualizations to coordinate. However, Snap's coordination model, speci"cation
interface and ultimate purpose are unique. Snap allows users to construct a variety of
common coordinations quickly and easily.

2.1. EVALUATION

Little work has been done to study and evaluate the use of coordinated visualizations.
Several empirical studies have compared speci"c coordinated}visualization interfaces to
other approaches such as "sh-eye and detail-only visualizations for browsing hierarchies
(Chimera & Shneiderman, 1994; Shneiderman, Shafer, Simon & Weldon, 1986) and large
2D spaces (Beard & Walker, 1990). In general, these studies indicate an advantage of
coordinated visualizations over single detail-only visualizations. However, the studies
did not determine why or what aspect of the coordinated visualizations caused improved
performance. Was it the additional information displayed in the multiple visualizations
or the interactive coordination between them?

Even less is known about users ability to construct such coordinated}visualization
environments. Usability work on Apple Dylan (Dumas & Parson, 1995) indicates that
once users were shown how to split and link its frames, they were able to remember it.
While users were successful with Dylan's single type of data, visualization and coordina-
tion, will that carry over to a general coordinated}visualization environment? Can users
grasp the notion of establishing di!erent types of coordinations between di!erent types
of visualizations? Can users construct appropriate interfaces for themselves this way?
Clearly, a deeper level of understanding about users and coordination is needed.

3. Snap-together visualization

3.1. USER INTERFACE

Snap is based on the relational data model. To explore a database, users "rst load and
display relations (tables or query results) in visualizations. Then they coordinate the
visualizations by specifying actions to tightly couple between the visualizations.

3.1.1. Scenario: xle}folders. We "rst demonstrate step-by-step how Snap is used to
construct the "le}folder browser for system administrators as described in the example in
the introduction (Figure 1). First, a database containing the folder and "le information is
opened with Snap. The Snap Menu window [Figure 2(a)] displays the list of data tables
and queries in the database (left), as well as a list of available visualization tools (right).

To view the folders in a scatterplot, the data table containing folder information is
dragged from the list and dropped onto the scatterplot button. A scatterplot window
opens, loads and displays the folders as data points (using Spot"re (Ahlberg & Wistrand,
IJHCS=20000418=Ravi=VVC



720 C. NORTH AND B. SHNEIDERMAN
1995), a commercial scatterplot package) as on the left of Figure 2(d). Choosing folder's
&&creation date'' attribute for the X-axis and &&size'' attribute for the>-axis establishes the
desired view. Now it is easy to spot any large old folders in the upper left of the
scatterplot.

Of course, users need to see the "les contained in the folders. In the Snap Menu
window again, a query that extracts information about the "les within a given folder is
dragged from the list and dropped onto the tabular visualization button. This opens
a tabular visualization window as on the right of Figure 2(d).

Now, the two visualizations can be coordinated for behavior similar to Windows
Explorer. Snap automatically adorns each visualization window with a Snap button
FIGURE 2(b) Each visualization window is adorned with a Snap button. Dragging the Snap button from the
scatterplot window to the tabular window constructs a coordination between the visualizations and displays

the Snap speci"cation dialog.

FIGURE 2(a). Snap's Menu window displays the list of tables and queries in the database (left), and the
available visualization tools (right). Dragging the folders table onto the scatterplot button opens a scatterplot

visualization of the folders [as in Figure 2(d), left].
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FIGURE 2(c) With the Snap speci"cation dialog, users choose the actions to tightly couple between the
visualizations. Here, selecting a folder in the spot"re scatterplot should load the contents of the folder into the

table visualization.

FIGURE 2(d) Construction of the coordinated}visualization interface is complete. Now, users can browse
by simply selecting folders in the scatterplot to view their "les in the tabular visualization, like Windows

Explorer.
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722 C. NORTH AND B. SHNEIDERMAN
. To coordinate the visualizations, the Snap button is dragged from the

scatterplot to the tabular visualization [Figure 2(b)]. The Snap Speci"cation dialog
[Figure 2(c)] then displays the available actions in each visualization that can be tightly
coupled. Choosing the &&select'' action for the scatterplot and the &&load'' action for the
tabular visualization speci"es that selecting a folder in the plot should load and display
the "les in that folder into the tabular visualization.

Now, construction of the coordinated}visualization interface is complete [Figure
2(d)]. Users can browse by simply selecting folders in the plot to view their contents in
the tabular visualization.

Additional visualizations could be added to further improve the interface (Figure 1).
For example, if the context of the folders in the hierarchical structure is important, then
users might load the folders into PARC's Hyperbolic Tree (Figure 1, lower left). They
could snap this to the scatterplot so that selecting a folder in either visualization would
also select and highlight it in the other. To examine the contents of many "les, users could
snap a "le viewer (Figure 1, lower right) onto the tabular visualization.

3.1.2. Scenario: census data. Snap is in use at the Census Bureau to construct visualiz-
ation environments for analysts and to prototype interface variations for CD-ROM
products. Census analysts have found the capability to relate data between maps and
plots extremely helpful. As an example, Figure 3 is an interface constructed with Snap for
exploring Census population data of US states (left) and counties (right). Users can
explore from nominal, geographic and numeric perspectives using the textual lists, maps
and scatterplots. Selecting Maryland reveals that it ranks very high in terms of income
per capita and percent college graduates. Apparently, Maryland has two counties that
are outliers with very high percentage of college graduates. Selecting the outlier county
with the highest per capita income reveals that it borders Washington, DC.

3.2. MODEL OF VISUALIZATION COORDINATION

Snap's conceptual model of visualization coordination is based on the relational data
model. To explore a database, users can construct interfaces composed of coordinated
visualizations based on the data schema. Snap establishes a direct correspondence
between relational data concepts and user-interface concepts.

Relational data model ;ser Interface
Relation P Visualization
Tuple P Item in a visualization
Primary key P Item ID
Join P Coordination

In Snap, a visualization displays a relation (a table or query result) from the database.
Coordination between two visualizations is based on the join relationship between their
relations (see Figure 4). This is somewhat similar to RMM (Isakowitz, Stohr & Balasub-
ramanian, 1995), which generates hyperlinks based on database relationships.

3.2.1. Relations into visualizations. When using Snap, users "rst load relations into
visualizations (Figure 5). Generally, each tuple in the relation is depicted as an individual
IJHCS=20000418=Ravi=VVC



FIGURE 3. A coordinated}visualization interface for exploring Census data of US states and counties, dynam-
ically constructed using Snap. Users can drill down from states (on the left) to their counties (on the right).
Brushing-and-linking between the nominal, geographic and numeric perspectives enables users to relate the

visualizations.

FIGURE 4. Snap's model maps relational data concepts to user-interface concepts. This illustrates the
"le}folder example in Figure 2.

SNAP-TOGETHER VISUALIZATION 723
item in the visualization. For example, a scatter plot displays each tuple as a dot using
two of its attributes as the coordinates. The relation must have a primary-key attribute to
uniquely identify individual tuples. We assume that queries inherits a primary-key
attribute from a base table.
IJHCS=20000418=Ravi=VVC



FIGURE 5. Components of Snap. Users "rst load queries into visualizations, then snap them together.
Coordinations tightly couple actions between visualizations.

724 C. NORTH AND B. SHNEIDERMAN
Each visualization supports a set of actions that can be performed on individual
tuples. These actions allow users to indicate interest in a tuple. They can also be invoked
by the system, using primary-key values to identify the tuple to act on. Each visualization
tool publishes the set of actions it supports to Snap. Example actions include the
following.

f Select: selecting a tuple to visually highlight it. For example, clicking on a dot in
a scatter plot might color the dot bright yellow.

f Scroll, zoom, etc: navigating to a tuple to bring it to the center of view. For example,
scrolling a list to bring an item to the top of the window.

When initially loading a query into a visualization, users may employ a parameterized
selection query. The parameter value is used as selection criteria in the query. Di!erent
parameter values can be plugged in to select di!erent subsets of a table. In this case, the
visualization also has a Load action. Invoking this action and supplying a parameter
value re-executes the query and loads the new results into the visualization. This enables
a visualization to be used to display di!erent portions of a large data table based on
external input.

3.2.2. Coordinating visualizations. After loading relations into visualizations, users can
then establish coordinations between the visualizations (&&snap them together''). A Snap
coordination tightly couples an action on items in one visualization to an action on items
in another visualization. Then, when the user invokes the former, Snap automatically
invokes the latter and vice versa. To establish a coordination between a pair of
visualizations, users choose the actions in each visualization to tightly couple (Figure 5).
Users are guided by the type of the join relationship between the relations in the two
visualizations: one-to-one or one-to-many.

1. One-to-one: this relationship is often the result of displaying di!erent projections of
the same table in multiple visualizations. Examples of the common coordinations
described in the introduction that are one-to-one are as follows.

f Brushing-and-linking:
Join relationship: one-to-one
IJHCS=20000418=Ravi=VVC



FIGURE 6. The user interface for Exercise 1 of the "rst study and also for the second study. A pair of textual
visualizations with overview and detail-view coordination for browsing detailed census data of the US states.
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Coordinated actions: select in visualization1 and select in visualization2. This links the
primary-key value of the select action in visualization1 to the primary-key value of the
select action in visualization2.
Operation: selecting an item in one visualization also selects (highlights) the corre-
sponding item in the other visualization. For example, in Figure 1, selecting a folder in
the Hyperbolic Tree highlights that folder in the scatter plot.

f Overview and detail view:
Join relationship: one-to-one
Coordinated actions: select in overview and scroll in detail view.
Operation: selecting an item in the overview scrolls (or more generally navigates) the
detail view to the details of that item. Likewise, scrolling the detail view selects the
currently viewed item in the overview. For example, in Figure 6, selecting a state from
the list on the left jumps the scrolling detail view to the section about that state.
IJHCS=20000418=Ravi=VVC



726 C. NORTH AND B. SHNEIDERMAN
f Synchronized scrolling:
Join relationship: one-to-one
Coordinated actions: scroll in visualization1 and scroll in visualization2.
Operation: scrolling through a list of tuples in one visualization also scrolls to
corresponding items in another visualization.

2. One-to-many: this relationship indicates a hierarchical structure between the rela-
tions. Each parent tuple in the "rst relation has many child tuples in the second relation.
A common coordination for this relationship type is as follows.

f Drill-down:
Join relationship: one-to-many
Coordinated actions: select in parent visualization (one) and load in child visualization
(many). The query in the child visualization is parameterized to select only those child
tuples that are related to the parent tuple whose primary-key value is given as the
argument. The primary-key value of the select action in the parent visualization is
linked to the argument of the child query.
Operation: selecting an item in the parent visualization loads related items into the
child visualization. For example, in Figure 1, selecting a folder in the scatterplot
displays the "les related to that folder in the tabular visualization. There is a one-to-
many relationship in the database between folders and "les. The &&Files of a Folder''
query loaded into the tabular visualization is essentially: &&SELECT * FROM Files
WHERE Files.ParentFolder"?''. Selecting a folder in the scatterplot binds its pri-
mary-key value to the &&?'' parameter and re-executes the query.

Snap coordinations are bi-directional, so that either action triggers the other. Users
can also chain coordinations end-to-end. For example, users can establish brushing-
and-linking across three visualizations. In Figure 1, selecting a folder in the Hyperbolic
Tree also selects it in the scatterplot, which in turn loads "les into the tabular visualiz-
ation. After construction, users can save a set of coordinated visualizations as a group for
later re-use or sharing.

3.3. SOFTWARE ARCHITECTURE

The Snap system acts as intermediary between visualization tools and handles all
database access. Snap uses a very simple application programming interface (API) to
communicate with visualization tools. Hence, researchers and developers can easily
snap-enable their independent visualization tools. We propose this API as a standard,
analogous to APIs for cut-and-paste capabilities in modern window systems, that would
broadly enable this advanced functionality and greatly increase the applicability of many
visualization tools.

Tools that have been enabled include a tabular visualization, a variety of textual list
visualizations, an outliner, Spot"re scatterplots, Treemaps, Hyperbolic Trees, Internet
Explorer, ArcView maps, image thumbnail browser, etc. Snap has been used with
Microsoft Access and Oracle databases. Snap is implemented on the Windows platform,
using COM to communicate with visualizations and ODBC for database access. When
IJHCS=20000418=Ravi=VVC



SNAP-TOGETHER VISUALIZATION 727
using Microsoft Access databases, Snap uses Access's GUI to enable users to create and
edit queries and manipulate the data schema.

For more details about the Snap system, see (North, 2000).

3.4. ADVANTAGES AND DISADVANTAGES

When constructing a coordinated}visualization interface, Snap has advantages (#) and
disadvantages (!) over programming the interface by hand (hard coding the desired
coordinations between visualizations):
Snap Programming

#Non-programmers !Programmers only
(for enabled visualizations)

#Quick and easy !Time consuming and di$cult

#Can make throw-away solutions for temporary !Short-term needs go unmet
or short-term needs

#Interfaces are changeable on the #y !Static, in#exible, slow turn-around

#Can prototype many options !Prototypes typically non-functional

#Robust coordination model !Prone to mistakes, inconsistencies

#Guided by Snap model !Design from scratch

#Once enabled, visualizations are reusable in !Visualizations hard-coded each time
many di!erent interfaces

!Potentially disparate visualizations #Package in custom user interface

!Bounded functionality #Custom functionality as needed
The Snap architecture is designed to use independent visualization tools. An alternate
approach would be to fully integrate visualizations by custom implementing them within
the context of the coordination system [as in Visage, DEVise, Spot"re, etc.]. Each
approach has corresponding advantages (#) and disadvantages (!):
Independent visualizations Integrated visualizations

#Open system, others can easily add !Closed system, only system developer
visualizations can add visualizations

#Reuses existing visualizations from the "eld !Popular visualizations must be re-
implemented within the system

IJHCS=20000418=Ravi=VVC



#Visualization development una!ected !Visualizations must use designated
structures

#Visualizations can be used outside the system !Visualizations only work within the
system

#Clean component-based design, visualizations !Potential inter-dependency
insulated via API complexities

#Consistent coordination model !Potential coordination inconsistencies

!Use only existing functionality of visualizations #Can add new functionality to
visualizations

!Visualization user-interface inconsistencies #All visualizations implemented with
same look and feel

!Potential performance hit #Potential performance boost from
shared data structures, etc.

!Static coordination model #Can add advanced custom
functionality for coordinating
dynamic data, edits, etc.
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4. Empirical evaluation

Studying the use of Snap is important for the following two reasons.

f To evaluate the usability and bene"t of the Snap system itself and discover potential
user-interface improvements.

f To gain a deeper level of understanding about users' ability to understand, construct
and use coordinated}visualization strategies in general. These are critically important
issues for visualization researchers and user-interface designers.

The Introduction section of this paper concludes that users should be provided with
the capability to construct coordinations between visualizations. This conclusion is valid
only if the capability is both (1) usable and (2) bene"cial. Hence, two separate studies
were undertaken to evaluate these two distinct aspects of coordination:

(1) Construction: can users successfully construct their own coordinated}visualization
interfaces?

(2) Operation: can users then operate the constructed coordinated}visualization interfa-
ces to explore information bene"cially?

4.1. EVALUATION OF COORDINATION CONSTRUCTION

The "rst study uses Snap to examine the construction phase of coordination. The goal of
this study is to determine if users can learn to construct coordinated}visualization
interfaces and how di$cult it is for users to construct them, in terms of success rate and
time to completion and to identify cognitive trouble-spots in the construction process.
IJHCS=20000418=Ravi=VVC



SNAP-TOGETHER VISUALIZATION 729
Can users grasp the concept of coordinating two independent visualizations together to
form a uni"ed browsing tool? What cognitive issues are involved, how much training is
required, how do users' backgrounds a!ect performance and can relatively novice users
construct powerful exploration environments in a short time? This study also reveals
potential Snap user-interface improvements.

4.1.1. Procedure. We worked with six subjects on a one-on-one basis. Four of the
subjects were employees of the US Bureau of the Census, three of whom were data
analysts or statisticians, and one a programmer. The other two subjects were computer
science students on campus.

First, background information was obtained from each subject concerning their
occupation and experience with census data, computers, databases, Microsoft Access,
visualization tools and programming.

Then, each subject was trained on Snap. The training program consisted of the
following.

(1) A quick demonstration of Snap by the administrator to give the subject an overview
and motivation.

(2) Review of relational database concepts including: tables, records, "elds, primary
keys, foreign keys; database query concepts including: projection, selection, sort, join;
and Snap model concepts.

(3) Detailed instruction on the use of Snap and Microsoft Access (Access is used to
construct queries). The subjects walked through the construction of a few variations
of coordinated}visualization interfaces for exploring census data. This demonstrated
how to construct common types of coordinations.

Then, when con"dent to continue, each subject began the testing phase. Subjects were
given a database of census data for the US states and counties. Testing consisted of three
exercises in which subjects were asked to construct a coordinated}visualization user
interface according to a provided speci"cation.

Exercise 1: The "rst speci"cation consisted of a printed screenshot of the desired user
interface (Figure 6). This trial was designed to be fairly easy, to be similar to those
constructed in the training, and to build con"dence.

Exercise 2: The second speci"cation was also a screenshot (Figure 7), but more
di$cult. It involved a one-to-many join relationship, so that selecting a state would
display data for that state's counties.

Exercise 3: The "nal speci"cation consisted of a textual description of the browsing
task that the constructed interface should support: &&Please create a user interface that
will support users in e$ciently performing the following task: to be able to quickly
discover which states have high population and high Per Capita Income, and examine
their counties with the most employees.'' This trial was designed to test if subjects could
think abstractly about coordination, and if they could think in terms of task-oriented
user-interface design. It was also designed to allow for potential creativity and variation
in subjects' solutions.

Finally, subjects were given the opportunity to freely explore the system, describe
problems with the Snap user interface and o!er suggestions for improvement.
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FIGURE 7. The user-interface speci"cation for Exercise 2 of the "rst study. It uses a textual list, scatterplot and
tabular visualization to explore census data for states and counties.
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The following variables were measured.

f Subjects' background information.
f Learning time.
f Success (yes/no or how close to success).
f Time to completion.

This study also observed the following.

f Cognitive trouble spots (in training and test trials).
f Snap user-interface problems.

4.1.2. Results. From the background survey, none of the subjects except the Census
programmer had experience with Access or SQL, and little exposure to relational
database concepts. The Census analysts had signi"cant experience with census data, but
generally used #at "les or spreadsheets. Each had experience with only basic visualiz-
ation tools (e.g. Excel charts).

All the subjects completed the training phase in 30}45 min. They all were able to
complete all three exercises, with occasional help from the administrators in using
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Access's visual query editor. They accomplished Exercise 1 in 2}5 min, and Exercise 2 in
8}12 min. They spent 10}15 min on Exercise 3 until they were satis"ed with their
solution.

In general, the subjects were quick to learn the concepts and usage, and were very
capable to construct their own coordinated}visualization interfaces. Several stated that
they had a sense of satisfaction and power in being able to both (1) so quickly snap
powerful exploration environments together and (2) with just a single-click e!ect explo-
ration across several visualizations and see the many parts operate as a whole. They
reported that it made exploration seem &&e!ortless'', especially in comparison to the
standard tools they are used to. As to the subjects' general reaction to Snap, they clearly
showed enthusiasm. There may have been social pressure to respond positively, since the
subjects knew that the administrator of the experiment was also the developer of the
Snap system.

There was an interesting di!erence between the reaction of the data analysts and
programmers (census programmer and computer science students). The programmers
commented enthusiastically about the component-based programming approach and
the ability to rapidly construct new interfaces. Whereas, the data analysts commented
about being able to explore the data thoroughly and e$ciently. They did not see it as
construction, but as exploration.

In fact, the data analysts performed better than the programmers. They learned the
database concepts quicker, completed the exercises quicker and constructed creative
interesting new interfaces. Perhaps they were more motivated by the use of examples
involving Census data. Even during the training, they were already trying variations of
coordinations and exploring the data. Two pointed out various anomalies in the data.
After "nishing the exercises, these subjects each voluntarily stayed for an additional hour
to discuss and try other examples. All four Census subjects expressed desire to use Snap
in their work. In fact, a collaborative e!ort has since been undertaken.

An important result was the creativity and variation evident in the subjects' solutions
to Exercise 3. Subjects were able to design user interfaces that made cognitive sense to
their own perspective on the data. They used a mixture of visualizations including tables,
scatterplots, lists and outliners. For example, while the expected design was two scatter-
plots with a drill-down coordination (one-to-many, select to load), one of the data
analyst subjects augmented this design with a pair of lists for the state and county names
(similar to Figure 3). The subject stated that this would help to see which state and
county was currently selected in the scatterplots, and also allow for accessing states by
name which would be di$cult with a scatterplot alone. Another subject who preferred to
see numeric values placed the counties in a table sorted by number of employees. One
had even constructed an interface using the treemap visualization, which is generally
considered a more advanced visualization di$cult for novices. In addition to variation in
user interfaces, subjects made use of the transitive property of coordination to coordinate
visualizations in di!erent pairings.

Overall, subjects did not have problems grasping the cognitive concept of co-
ordinating visualizations. They were able to generate designs by visual duplication and
by abstract task description. Results from Exercise 3 demonstrated that these users were
able to design appropriate coordinated}visualization interfaces. These encouraging
results indicate that users can handle a mid-level of design in which they piece together
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pre-designed components to construct a larger design. Snap apparently "nds a middle
ground between usage (the realm of end-users) and design (the realm of experienced HCI
practitioners) appropriate for these data-savvy users. This validates the primary bene"t
of the Snap capability, its #exibility.

The problems subjects did have were in manipulating the Snap and Access user
interfaces. Creating queries was by far the most di$cult part of the construction process
for the subjects. Learning to use Access and its query editor is a challenge in such a short
time.

4.1.3. User-interface issues. Understanding the basic underlying model of Snap was
critical. However, the current Snap user interface and the form "ll-in style of the Snap
speci"cation dialog does not re#ect this model well. This study identi"ed four major
trouble spots in the interface.

(1) The terminology of the snap-able actions &&select'' and &&load'' caused some con-
fusion. It was not clear enough that these represented user-interface actions. Appar-
ently, some subjects were confusing &&select'' with the database query sense of
selection.

(2) Constructing a drill-down coordination (one-to-many, select-to-load) was very
laborious, and subjects sometimes got lost in the three-step process: writing the
parameterized query, opening the query in a visualization and specifying the coord-
ination.

(3) When constructing interfaces of three or more visualizations, subjects sometimes
forgot what coordinations they had constructed between visualizations. They had to
recheck them individually.

(4) When subjects were not quite sure what coordinations they should construct, they
would often &&just try stu! '' and see how it behaves. A coordination debugging mode
is needed to help them see how the tight-couplings propagate between the visualiz-
ations.

Redesigning the Snap user interface around an overview diagram would solve these
problems. A node and link diagram could represent the visualizations as nodes and
coordinations as links between them. This overview could become the primary user
interface for constructing, editing, examining and debugging coordinations. Such a visual
representation with direct-manipulation interaction would closely re#ect the conceptual
Snap model (a &&visualization schema'' analogous to the data schema). Hence, this would
likely reduce users' training time as well.

In addition, while the ability to create queries with Access enables more complex
scenarios, it is a burden for common simple coordinations. Basing the Snap speci"cation
dialog on the database schema diagram would more closely match users' mental model
of the data. This would simplify constructing drill-down coordinations since Snap could
generate the parameterized selection queries automatically. For projection queries,
expanding the Snap Menu window to include attribute names would allow users to
directly select desired attributes to load into visualizations. Together, these modi"cations
would obviate the need to use Access to manually create queries in common cases. This
could further reduce training time to almost nothing.
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Also, window management is a serious problem. Subjects spent considerable amounts
of time rearranging visualization windows on the screen into nicely tiled layouts. Others
have proposed solutions to this general problem (see Kandogan & Shneiderman, 1997
for a review).

4.2. EVALUATION OF COORDINATION OPERATION

The second study uses Snap to examine the operation phase of coordination. The goal of
this study is to measure the bene"t of coordinating visualizations as compared to simply
using single or multiple uncoordinated visualizations. The visual feedback across coor-
dinated visualizations could be distracting or disorienting for users. But if there is
a bene"t, what is its magnitude in terms of user task times and subjective satisfaction for
browsing large information spaces?

While there are many possibilities, this study examines the overview-and-detail coord-
ination. This coordination has two enhancements over the traditional single-visualiz-
ation detail-only display.

(1) Overview: a display enhancement that depicts the full breadth of the data in a com-
pact form, like a table of contents.

(2) Coordination: an interaction enhancement that allows users to select an item in the
overview to scroll the detail to that item. Likewise, directly scrolling the detail
highlights the current item in the overview.

Chimera's results (Chimera & Shneiderman, 1994) seem to indicate that
overview-and-detail should perform better than detail-only. But, if so, which enhance-
ment is the important factor that causes improved user performance? Is it (1) the
information displayed in the overview or (2) the coordination between the overview and
detail?

Hence, the purpose of this study is not to compare a coordinated user interface with
the best alternative (see Section 2.1 for such studies). Instead, the purpose is to further
understand coordination and its users. Speci"cally, why and how much does the
capability to coordinate an overview improve over using the detail only, in the context of
a single popular type of navigation (one-dimensional scrolling) for browsing tasks? What
is the value or detriment of multiple visualizations that are not coordinated? What are
users' reactions to these interfaces?

4.2.1. Independent variables. ;ser interface. A simple textual user interface, construc-
ted with Snap, for browsing population statistics of 45 of the US states from the Census
Bureau's 1990 census. Subjects did not need to use the Snap user interface, but used
instances of a simple textual visualization tool that were coordinated by Snap a priori to
browse the data. The three treatments (see Figure 6) are as follows.

(1) Detail-only: a single scrolling textual report of the states, in alphabetical order, and
their data (Figure 6, right-most window).

(2) No-coordination: the same visualization as detail-only, with the addition of a second
textual visualization tiled on the left. The second visualization displays only the
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names of the states as an overview. The visualizations are not coordinated (for
example, as if generated by Access).

(3) Coordination: the same visualizations as no-coordination, with the addition of an
overview-and-detail coordination between them. In Snap, this tightly couples the
overview's select action to detail's scroll action.

The no-coordination interface treatment is included for two important reasons. First,
no-coordination will reveal which aspect of the coordinated}visualization interface
approach is most critical: the multiple visualizations or the coordination. Second,
no-coordination mimics many common systems such as Access, Excel, web browsers and
other #exibility level 2 or below systems, which do not allow users to construct custom
coordinations between their visualizations. No-coordination also occurs when using
multiple visualization tools that were not originally developed to work together. With-
out Snap, users cannot coordinate them.

¹ask. A variety of browsing tasks, using a question and answer approach. The nine
treatments are as follows.

(1) Coverage-yes: &&does the information include statistics about the state of Ohio?''
where Ohio is included in the data.

(2) Coverage-no: same as coverage-yes, but where the state is not included in the data.
(3) Overview patterns: &&how many states in the list begin with the letter M?''
(4) <isual lookup: &&what is the population of the sixth state from the bottom of the list?''
(5) Nominal lookup: &&what is the population of Georgia?''
(6) Compare-2: &&which of the following states has higher median family income: Califor-

nia or Washington?''
(7) Compare-5: &&which of the following "ve states has higher median household income:

Florida, Texas, Louisiana, Alaska or Oregon?''
(8) Search for target value: &&which state has average commute time of 31?''
(9) Scan all: &&which state has the highest college degree %?''

The tasks are listed here in order from easy to di$cult based on the experiment results.
The actual order they were administered was: 5, 1, 6, 8, 3, 7, 2, 9, 4.

4.2.2. Dependent variables. ;ser performance time: time to correctly complete each task,
not including reading the task question.
;ser subjective satisfaction: subjects rated their satisfaction with each interface on

a scale of 1}9 on four categories (with scales): comprehensibility (confusing to clear), ease
of use (di$cult to easy), speed of use (slow to fast), overall satisfaction (terrible to
wonderful).

4.2.3. Procedure. The 18 subjects were students and sta! from campus, and were paid
$10 to participate. A within-subjects design was used. Each subject used all three
interfaces to perform all nine tasks. To avoid repetition, three di!erent but similar sets of
task questions were used. To counterbalance for potential order e!ects, all six possible
permutations of interface order were each assigned 3 times. The three task sets were not
permuted.
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For each interface, subjects were "rst trained in its use and performed several practice
tasks before beginning the timed trials. After "nishing all three interface treatments,
subjects then completed the subjective satisfaction questionnaire.

4.2.4. Results. Analysis of the data reveals a strong and interesting result. Figure 8
shows the mean user-performance times for each task and interface. A 3]9 within-
subjects ANOVA reveals that the user interface e!ect, task e!ect and interaction e!ect
are all statistically signi"cant at p(0.001. Nine one-way ANOVAs reveal that user
interface is signi"cant for all nine tasks at p(0.001.

Finally, individual t-tests between each pair of user interfaces within each task
determine performance advantages. For tasks 1}3, the coordination and no-coordina-
tion interfaces are both signi"cantly faster than the detail-only interface at p(0.001, but
not proven di!erent from each other. Whereas, in tasks 5}9, coordination is signi"cantly
faster than both no-coordination and detail-only at p(0.001, and the latter are not
proven di!erent from each other. However, while task 4 (Visual lookup) could be
included in the second group of tasks, it may classify as an in-between case. For this task,
coordination is signi"cantly faster than the other two user interfaces at p(0.005, but
no-coordination is marginally signi"cant over detail-only at the p(0.07 level.

First, coordination results in major improvement in user performance time over
detail-only for all tasks. On average, coordination achieves an 80% speedup over
detail-only for easy tasks and 50% for di$cult tasks. The least improvement, about 33%,
is in task 6 (compare-2). This task had the lowest interaction}time to thinking}time ratio.

The no-coordination interface results in a nearly binary pattern, and is likely the
source of the interaction e!ect between task and interface (see Figure 9). For tasks 1}3,
no-coordination performs faster than detail-only, and its averages are similar to
coordination. In these tasks, subjects only needed the information in the overview to
accomplish the task. Whereas, in tasks 5}9 the coordination interface is faster than
no-coordination and the averages for no-coordination are similar to detail-only. In these
FIGURE 8. Average user-performance time for tasks in the second study. The coordinated interface has
signi"cantly faster performance in most cases: coordination; no-cordination; detail-only.
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Tasks

1}3 4}9

Slower group Detail-only Detail-only
No-coordination

Faster group No-coordination
Coordination Coordination

FIGURE 9. User-interface treatments in the second study, grouped by user performance in tasks. The faster
groups are signi"cantly faster than the slower groups at p(0.005. The no-coordination interface results in

a binary e!ect.
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tasks, subjects needed to access the details of the data. Observing subjects' behavior as
they performed these tasks revealed that when using no-coordination they tended to
ignore the overview. The lack of signi"cant di!erence between no-coordination and
detail-only in these cases does not imply that they are necessarily the same. It is
conjectured that they are the same due to the observation of the users. In any case,
coordination is signi"cantly faster than no-coordination for these tasks. Hence, in tasks
where access to details is important, undoubtedly a majority in common applications,
coordination is absolutely critical.

Task 4 (Visual lookup) might classify as an in-between case. With no-coordination,
many subjects determined the name of the target state from the overview, then scrolled to
it in the detail view. With detail-only, they scrolled to the bottom, then scrolled back up
while counting, and sometimes lost track. Apparently, this is a case where simply having
the contextual information of the overview was somewhat advantageous. Coordination
was still a major improvement over both.

In fact, an important result is that coordination performance times for lookup tasks
(4 and 5) are in the same extremely fast range as overview tasks 1}3. Whereas, no-
coordination times drop to detail-only level performance. When looking up details,
perhaps the most common task, coordination especially excels.

In general, overview-and-detail coordination greatly improved performance over
detail-only scrolling. Clearly, a major advantage of the coordination is the ability to
directly select a target in the overview to immediately locate its details. Whereas, the
scrolling interfaces require careful searching while dragging the scroll bar thumb.
Observing the subjects as they performed the tasks revealed that they were more likely to
explore when using coordination. For example, in the Compare-2 and Compare-5 tasks,
subjects were more willing to recheck their answers with coordination. With detail-only
and no-coordination subjects spent extra e!ort to mentally alphabetize the "ve states to
compare so as to minimize their scrolling e!ort. Several subjects reported verbally and
on the questionnaire that scrolling was di$cult. This is surprising since scrolling is
a fundamental component of current GUI systems and perhaps the most common
navigational method. The coordination interface could be considered an improved scroll
bar that facilitates exploration.

4.2.5. Subjective satisfaction. With the satisfaction data (Figure 10), a 3]4 within-
subjects ANOVA indicates that user interface, subjective satisfaction category, and
interaction e!ect are all signi"cant at p(0.001. One-way ANOVAs for each category
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FIGURE 10. Average user subjective satisfaction in the second study. The coordinated interface rates signi"-
cantly higher in all four categories: coordination; no-cordination; detail-only.
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indicate that comprehensibility, ease of use, speed of use and overall satisfaction are all
signi"cant at p(0.001 level.

Analysing each pair of interface treatments within each category reveals that all pairs
are signi"cant at p(0.001 except: detail-only and no-coordination in ease of use are
signi"cant at p(0.05 and the same pair in comprehensibility are not proven di!erent.

Coordination is a clear winner, gaining nearly twice the rankings of detail-only and
no-coordination in ease, speed, and overall. On average, subjects ranked no-coordina-
tion 1}2 points higher than detail-only, except in comprehensibility they ranked about
the same. While completing the survey, several subjects stated that no-coordination was
only useful for the overview tasks.

4.2.6. Answers. Returning to the research questions: which factor is more critical, the
overview information or the coordination? The answer is nearly binary. If only the
overview information is needed, then naturally coordination is not necessary. But for the
important cases where access to details is needed, then coordination is critical. What is
the magnitude of the bene"t? For the three most di$cult tasks, the coordinated version
cut tasks time in half. This study also reveals the importance of good overview design to
enable common questions to be answered directly from the overview.

When "rst presented with the no-coordination interface, many subjects immediately
attempted to click in the overview expecting the detail view to change, even when they
had not yet seen the coordination interface. Hence, subjects were not distracted by this
coordination, but rather they desired and expected it. They were visibly distraught when
the interface did not behave as they hoped. They were clearly more satis"ed with the
coordination interface, as the subjective satisfaction data indicates. Subjects verbally
expressed appreciation for the interactive coordination that sped their tasks.

4.3. COMBINED ANALYSIS

Combining the results from these two studies may indicate the breakpoint at which time
savings during coordination operation surpass coordination construction time. In
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Exercise 1 of the "rst study, subjects constructed the same user interface as was used in the
second study for browsing tasks. The time cost of constructing the coordinated interface
was about 2}5 min, while it saved about 0.6}1.5 min over the standard detail-only interface
for the more di$cult tasks. Hence, after just a few tasks, users are already reaping savings
when constructing their own coordinated interface. Of course, it is di$cult to factor in
learning time and e!ects of sharing saved interfaces. Nevertheless, this simple analysis
reveals that customized information visualization is within the grasp of data users.

5. Conclusions and future work

This paper validates the capability for data users to construct their own customized
coordinated visualization environments for exploring data. The Snap conceptual model
and software architecture demonstrate that such a capability is technologically feasible.
The Snap user interface and two studies demonstrate that such a capability is both
usable and bene"cial.

The overview-and-detail coordination o!ered a 30}80% speedup over detail-only
scrolling for all nine user tasks. While the uncoordinated overview was su$cient for
overview only tasks, coordination was critical when accessing details. Data-savvy users
successfully and enthusiastically designed and constructed coordinated interfaces of their
own, showing creativity and variation. Users readily grasped coordination based on
relational data schemas, although querying was problematic. These users are clearly
ready for and strongly desire signi"cantly more advanced tools than standard detail-
only, uncoordinated or hard-wired systems. While these cognitive issues were examined
within the Snap platform, we believe that these results will apply to similar coordinations
and #exibility in other systems.

The implications for practitioners are as follows.

f User-interface designers should employ coordination strategies, such as overview-and-
detail, in their designs to improve user performance and satisfaction.

f Designers of systems that display multiple visualizations (uncoordinated or #exibility
level 2 and below) can implement Snap-like coordination construction concepts into
them, advancing them to #exibility level 3.

f Developers of independent visualization tools and operating systems can integrate
Snap APIs and architectures to enable universal coordination capabilities. For
example, Snap concepts could be integrated into a data standard such as ODBC.

The design of each coordination is critical, and others need to be evaluated. Of
particular interest are the drill-down and brushing-and-linking coordinations. In addi-
tion, these studies have identi"ed major improvements to the Snap user interface for
coordination construction based on cognitive issues. Additional work is needed to
discover if user training requirements can be eliminated by basing the interface on data
schema diagrams. Continued research is needed to explore coordination overviews,
coordination guidelines, automated coordination suggestion and more.

This research was partially supported by funding from West Group and the US Bureau of the
Census. Thanks to Kent Norman for advice on the second study. Thanks also to Ben Bederson,
Dave Mount, Adam Porter and Allan Kuchinsky for comments.
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